

H
el

lo
!

S
ta

s
B

e
km

a
n

T
u

to
ri
a

l:
G

e
tt

in
g

 s
ta

rt
e

d
 w

ith
 m

o
d

_
p

e
rl

S
lid

e
 1

O’Reilly Open Source Convention
July 23, 2001

San Diego, CA

Tutorial:

Getting started with mod_perl

by Stas Bekman
http://stason.org/

<stas@stason.org>
Senior Software Engineer, eXtropia.com

Stas BekmanTutorial: Getting started with mod_perl Slide 2

This document is originally written in POD, converted to HTML,
PostScript and PDF by Pod::HtmlPsPdf Perl module.

Stas BekmanTutorial: Getting started with mod_perl Slide 3

Stas Bekmanmod_perl Tutorial: Agenda Slide 4

1 Agenda

Stas Bekmanmod_perl Tutorial: Agenda Slide 5

1.1 Agenda
mod_perl Introduction

Basic Configuration

Basic Scripts and Handlers

Server Setup Strategies

CGI to mod_perl Porting

mod_perl Coding Guidelines

Basic Configuration

Stas Bekmanmod_perl Tutorial: Agenda Slide 6

Basic Scripts and Handlers

mod_perl and RDBMS

Improving Performance.

Stas Bekmanmod_perl Tutorial: Agenda Slide 7

1.2 Off-tutorial reading
Perl Reference

Getting Help

Stas Bekmanmod_perl Tutorial: Agenda Slide 8

;o)

Stas Bekmanmod_perl Tutorial: Agenda Slide 9

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 10

2 Getting Started Fast

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 11

2.1 mod_perl in Four Slides
Installation

Configuration

The ‘‘mod_perl rules’’ Apache::Registry Scripts

The ‘‘mod_perl rules’’ Apache Perl Module

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 12

2.2 What is mod_perl?
Solves numerous mod_cgi shortcomings:

Embedded Perl Interpreter -- no loading overhead

Code compiled only once per process life -- no compilation
overhead

No forking per request -- process reuse

Response processing is now reduced to running your code.

Response times improve by a factor of 10 to 100

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 13

A bigger size, but just a few processes can handle a much
bigger load

mod_cgi compatibility preserved (Apache::Registry and
Apache::PerlRun modules)

Persistent database connections

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 14

Extended mod_cgi’s functionality:

A complete Perl API added to the Apache core

Handling of all phases of request processing in Perl.

Writing complete Apache modules in Perl

Complete server configuration in Perl.

Numerous 3rd party modules are available

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 15

Logistics:

Developed by Doug MacEachern

Licensed under the Apache Software License.

Home page http://perl.apache.org

Mailing list: send an empty email to
modperl-subscribe@apache.org

January 2001 -- 2 Million mod_perl hosts (according to
http://perl.apache.org/netcraft/)

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 16

http://perl.apache.org/

http://perl.apache.org/netcraft/

2.3 Installation

 % lwp-download \
 http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download \
 http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
 % tar xzvf apache_x.x.x.tar.gz
 % tar xzvf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x && make install

That’s all!

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 17

http://www.apache.org/dist/apache_x.x.x.tar.gz

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz

2.4 Configuration
Add the following to the configuration file httpd.conf:

 # for Apache::Registry mode
 Alias /perl/ /home/httpd/perl/

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 18

2.5 The "mod_perl rules"
Apache::Registry Scripts

You can write plain perl/CGI scripts just as under mod_cgi:

 mod_perl_rules1.pl

 print "Content-type: text/plain\r\n\r\n";
 print "mod_perl rules!\n";

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 19

Of course you can write them in the Apache Perl API:

 mod_perl_rules2.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);
 $r->print("mod_perl rules!\n");

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 20

Save both files under the /home/httpd/perl directory

Make them executable and readable by server,

and issue these requests using your favorite browser:

 http://localhost/perl/mod_perl_rules1.pl
 http://localhost/perl/mod_perl_rules2.pl

In both cases you will see on the following response:

 mod_perl rules!

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 21

http://localhost/perl/mod_perl_rules1.pl

http://localhost/perl/mod_perl_rules2.pl

2.6 The "mod_perl rules" Apache
Perl Module

To create an Apache Perl module, all you have to do is to
wrap the code into a handler subroutine:

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 22

 ModPerl/Rules.pm

 package ModPerl::Rules;
 use Apache::Constants;

 sub handler{
 my $r = shift;
 $r->send_http_header(’text/plain’);
 print "mod_perl rules!\n";
 return OK;
 }
 1;

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 23

Create a directory called ModPerl under one of the directories
in @INC

and put Rules.pm into it.

Then add the following snippet to httpd.conf:

 PerlModule ModPerl::Rules
 <Location /mod_perl_rules>
 SetHandler perl-script
 PerlHandler ModPerl::Rules
 </Location>

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 24

Now you can issue a request to:

 http://localhost/mod_perl_rules

and just as with our mod_perl_rules.pl scripts you will see:

 mod_perl rules!

as the response.

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 25

http://localhost/mod_perl_rules

2.7 Is That All I Need To Know
About mod_perl?

Definitely not!

These slides are intended to show you that you can install
and start using a mod_perl server within 30 minutes of
downloading the sources.

There is much more to mod_perl than this.

Fortunately, there are many resources and lots of help freely
available to you.

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 26

See the last chapter of this tutorial for the help references.

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 27

;o)

Stas Bekmanmod_perl Tutorial: Getting Started Fast Slide 28

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 29

3 Server Setup Strategies

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 30

3.1 What we will learn in this
chapter

mod_perl Deployment Overview

Standalone mod_perl Enabled Apache Server

One Plain Apache and One mod_perl-enabled Apache
Servers

Adding a Proxy Server in http Accelerator Mode

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 31

3.2 mod_perl Deployment
Overview

There are several different ways to build, configure and
deploy your mod_perl enabled server.

Some of them are:

1. 1 mod_perl server

2. 1 light Apache and 1 mod_perl servers

3. Any of the above plus a reverse proxy server in http
accelerator mode.

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 32

3.3 Standalone mod_perl
Enabled Apache Server
The advantages :

Simplicity. Copy-n-paste instructions and you are done.

No network/IPs/ports changes.

Blazing speed.

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 33

The disadvantages:

Process size

(-) usually 5-10MB and more

(+) but memory sharing helps a lot!!!

(-) many processes, more memory

(+) but less processes than with mod_cgi

(+) memory is cheap

(-) a waste if serving static objects

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 34

Serving slow clients

serving output to a client with a slow connection,

a process is tied before all of the response is sent to a
client.

output generation: 20-500 millisec

sending output: 10-60 sec (10,000 - 60,000 millisec)

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 35

Conclusions :

Best to start with if you are new!

Perfect choice if you server only mod_perl scripts

A good choice for Intranet sites (very fast delivery!)

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 36

3.4 One Plain Apache and One
mod_perl-enabled Apache
Servers
The advantages:

Less memory

Fewer processes -- less total memory used

Better tuning

Optimal tuning of MaxClients ,
MaxRequestsPerChild , etc. for each of the servers to
utilize better the resources.

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 37

Many lightweight httpd_docs servers

just a few heavy httpd_perl servers.

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 38

A catch: Relative URLs:

 http://www.example.com:8080/perl/example.pl

The above URL returns a page with relative links to images

Where the images will be brought from?

Of course from the mod_perl heavy server
http://www.example.com:8080 --

Solution: fully qualified URIs

 s{/img/foo\.gif}{ http://www.example.com/img/foo.gif };

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 39

http://www.example.com:8080/perl/example.pl

http://www.example.com:8080/

http://www.example.com/img/foo.gif

The disadvantages:

Two sets of controlling scripts + watchdogs

Logs merging

Still having a problem of serving slow clients

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 40

3.5 Adding a Proxy Server in http
Accelerator Mode

At the beginning there were 2 servers:

One plain apache server, which was very light, and
configured to serve static objects,

The other mod_perl enabled (very heavy) and configured to
serve mod_perl scripts.

We name them httpd_docs and httpd_perl respectively.

Usually the two servers coexist at the same IP address by
listening to different ports:

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 41

 80 for C<httpd_docs>

 8080 for C<httpd_perl>

Now why would you want to use a proxy server (in the http
accelerator mode).

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 42

The advantages:

Proxy cache

Serve static objects from cache

Less IO -- higher throughput

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 43

Output Buffering

The proxy server acts as a sort of output buffer for the
dynamic content.

The mod_perl server sends the entire response to the
proxy and is then free to deal with other requests.

The proxy server is responsible for sending the response
to the browser.

So if the transfer is over a slow link, the mod_perl server
is not waiting around for the data to move.

Using numbers is always more convincing :)

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 44

56 kbps connection => 7 Kbytes/sec . (1 byte = 8 bit)

An average generated HTML page to be of 42kb

An average script that generates this output in 0.5
second

How long will the server wait before the user gets the
whole output response?

A simple calculation reveals pretty scary numbers:

 42 KB / (0.5 sec * 7 KB/sec) ~ 12

11 (12-1) other dynamic requests could be served during
this time

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 45

Usually pages are generally much bigger than 42Kb

and users tend to open more than one browser at the
same time

Result: The waiting time can grow 10 times and more

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 46

Hiding Implementation Details

Users will never see ports in the URLs

Being able to shut down one server and tell the front end
to send request to another machine.

Load ballancing transparent to users

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 47

Security protection

Makes your internal server inaccessible from outside --
listens on 127.0.0.1 (or NAT).

Prevents from getting directly attacked by arbitrary
packets from whomever.

This allows for only your public ‘‘bastion’’ accelerating
www server to get hosed in a successful attack, while
leaving your internal data safe.

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 48

The disadvantages

Administration overhead

You have another daemon to worry about

One more startup/shutdown/watchdog script

Memory Usage

Adding to memory usage: Proxy servers can be
configured to be light or heavy

Squid runs only a single process (threaded) but might
consume a lot of memory

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 49

Have I succeeded in convincing you that you want a proxy
server?

If you are on a local area network (LAN), then the big benefit
of the proxy buffering the output and feeding a slow client is
gone.

You are probably better off sticking with a straight mod_perl
server in this case.

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 50

3.6 Implementations of Proxy
Servers

This section is located in your handouts and was left as an
off-tutorial reading.

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 51

;o)

Stas Bekmanmod_perl Tutorial: Server Setup Strategies Slide 52

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 53

4 Porting from CGI Scripts
and mod_perl Coding

Guidelines.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 54

4.1 What we will learn in this
chapter

Exposing Apache::Registry secrets

Sometimes it Works, Sometimes it Doesn’t

@INC and mod_perl

Reloading Modules and Required Files

__END__ and __DATA__ tokens

Output from system calls

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 55

Terminating requests and processes

die() and mod_perl

Global Variables Persistance

Command line Switches (-w, -T, etc)

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 56

4.2 Exposing Apache::Registry
secrets

Apache::Registry is a mod_cgi compatible module

It doesn’t like sloppy programming style

There are a few hidden issues to know about.

Let’s start with some simple code

Detect bugs and debug them,

Discuss possible pitfalls and how to avoid them.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 57

A simple CGI script, that initializes a $counter to 0, and
prints its value while incrementing it.

 counter.pl:

 use strict;
 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0;
 for (1..5) {
 increment_counter();
 }
 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 58

You would expect to see the output:

 Counter is equal to 1 !
 Counter is equal to 2 !
 Counter is equal to 3 !
 Counter is equal to 4 !
 Counter is equal to 5 !

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 59

And that’s what you see when you execute this script the first
time.

But let’s reload it a few times...

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 60

Suddenly after a few reloads the counter doesn’t start its
count from 1 any more.

 Counter is equal to 6 !
 Counter is equal to 7 !
 Counter is equal to 8 !
 Counter is equal to 9 !
 Counter is equal to 10 !

We continue to reload and see that it keeps on growing, but
not steadily starting almost randomly at 10, 10, 10, 15, 20...
Weird...

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 61

We saw two anomalies in this very simple script:

Unexpected increment of our counter over 5

Inconsistent growth over reloads.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 62

4.2.1 The First Mystery
The error_log file says:

 Variable "$counter" will not stay shared
 at /home/httpd/perl/conference/counter.pl line 13.

Add ’use diagnostics; ’ to see the long version of the
warning.

A named nested subroutine that refers to a lexically scoped
variable defined outside this nested subroutine? Where?

Perl sees the script in a different way?

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 63

A debugger to rescue!!!

How?

Special debugger for mod_perl -- via Apache::DB

Interactive and non-interactive debugging

We go for non-interactive debug here

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 64

httpd.conf:

 PerlSetEnv PERLDB_OPTS \
 "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1 frame=2"
 PerlModule Apache::DB
 <Location /perl>
 PerlFixupHandler Apache::DB
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 </Location>

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 65

Restart the server

...request...

Firstly, /tmp/db.out was written, with a complete trace of the
code that was executed.

Secondly, error_log now contains the real code that was
actually executed.

This is produced as a side effect of reporting the ’Variable
"$counter" will not stay shared at...’ warning that we saw
earlier.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 66

Here is the code that was actually executed:

 package Apache::ROOT::perl::conference::counter_2epl;
 use Apache qw(exit);
 sub handler {
 BEGIN { $^W = 1;};
 use strict;
 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0;
 for (1..5) {
 increment_counter();
 }
 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }
 }

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 67

Conclusions :

Every scripts is placed into a unique package

The code is wrapped into a handler() subroutine.

increment_counter() becomes a nested subroutine
under Apache::Registry .

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 68

Solution :

Put your code into a sub, move into a separate file and
require() it.

For example:

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 69

 mylib.pl:

 my $counter;
 sub run{
 print "Content-type: text/plain\r\n\r\n";
 $counter = 0;
 for (1..5) {
 increment_counter();
 }
 }
 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }
 1;

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 70

 counter.pl:

 use strict;
 require "./mylib.pl";
 run();

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 71

Postmortem :

Keep your subs in external libraries (modules)

Don’t worry about nested subroutines effects anymore

Help Perl to help you -- keep the warnings mode On:

 Variable "$counter" will not stay shared at ...

Watch error_log

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 72

The above example was pretty boring.

Once upon a time I wrote a simple user registration program.

 use CGI;
 $q = new CGI;
 my $name = $q->param(’name’);
 print_respond();

 sub print_respond{
 print "Content-type: text/plain\r\n\r\n";
 print "Thank you, $name!";
 }

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 73

A cool nice program, which happily went into production.

My boss does the verification

Expects: ‘‘Thank you, boss’’

Sees: ‘‘Thank you, Stas!’’.

But I’ve tested the script a lot on development machine and it
worked.

What’s the catch?

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 74

4.2.2 The Second Mystery
Back to our original example

Why did we see inconsistent results over numerous reloads?

Apache is serving requests in Round Robin fashion.

If you have 10 httpd children alive -- 10 first reloads are fine.

Subsequent reloads then return unexpected results.

Requests can appear at random and children don’t always
run the same scripts.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 75

Why couldn’t we see the problem?

We didn’t look at error_log

If we did, there were many warnings -- too hard to see any
real errors.

We had too many children running to notice the problem.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 76

Solution :

To run the server as a single process. (httpd -X).

The problems reveals itself on the second reload.

Warnings should be turned On

error_log shouldn’t be clobbered with multiply warnings.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 77

4.3 Sometimes it Works,
Sometimes it Doesn’t

Some code is behaving diferrently from execution to
execution?

We just saw such a example with the counter script.

Run the server in the single mode httpd -X to nail these
bugs.

Generally the problem you have is of using global variables.

Global variables are persistent through the process life.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 78

4.3.1 Regular Expression Memory
Be careful, using the /o regular expression modifier

It compiles a regular expression once, on its first execution,
and never compiles it again.

 my $pat = $q->param("keyword");
 foreach(@list) {
 print if /$pat/o;
 }

To catch this bug, use httpd -X

Also see Compiled Regular Expressions section of the Perl
Reference chapter at the end of the handout.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 79

4.4 @INC and mod_perl
Under mod_perl, once the server is up, @INC is frozen and
cannot be updated from the code.

Temp modification is possible while the script or the module
are loaded and compiled for the first time.

After that its value is reset to the original one.

The only way to change @INC permanently is to modify it at
Apache startup.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 80

Two ways to alter @INC at server startup:

In the configuration file.

 PerlSetEnv PERL5LIB /home/httpd/perl:/home/httpd/mymodules

In the startup file:

 use lib qw(/home/httpd/perl /home/httpd/mymodules);

 httpd.conf:

 PerlRequire /path/to/startup.pl

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 81

Note that you cannot use FindBin under mod_perl, since it
gets compiled only once.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 82

4.5 Reloading Modules and
Required Files

We want modules under development to be reloaded on
every modification

Doesn’t happen under mod_perl -- optimized for speed.

Only Registry scripts get reloaded if modified.

Solutions?

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 83

4.5.1 Restarting the server
Restart the server after every change

Not convenient at all

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 84

4.5.2 Using Apache::StatINC for the
Development Process

Help comes from the Apache::StatINC module.

When Perl pulls a file via require(), it stores the full
pathname as a value in the global hash %INC with the file
name as the key.

Apache::StatINC looks through %INC and it immediately
reloads any files it finds in there if it sees that they have been
updated on disk.

To enable this module just add two lines to httpd.conf .

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 85

 PerlModule Apache::StatINC
 PerlInitHandler Apache::StatINC

Enable the Debug mode to be sure that it works.

 PerlModule Apache::StatINC
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 PerlInitHandler Apache::StatINC
 PerlSetVar StatINCDebug On
 </Location>

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 86

4.5.3 Using Apache::Reload
Apache::Reload comes as a drop-in replacement for
Apache::StatINC .

It provides extra functionality and better flexibility.

The default is the Check all mode:

 PerlInitHandler Apache::Reload

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 87

Register modules implicitly :

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off

and add:

 use Apache::Reload;

to every module that you want to be reloaded on change.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 88

Register Modules Explicitly :

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadModules "My::Foo My::Bar Foo::Bar::Test"

You can register groups of modules using the metacharacter
(*).

 PerlSetVar ReloadModules "Foo::* Bar::*"

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 89

Use a "Touch" File :

 PerlSetVar ReloadTouchFile /tmp/reload_modules

when an update is performed

 % touch /tmp/reload_modules

Modified modules get reloaded

Useful in production

The only overhead is a single stat call on every request.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 90

This module might have a problem with reloading single
modules that contain multiple packages that all use
pseudo-hashes.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 91

4.5.4 Reloading handlers
Reloading PerlHandler on each invocation:

 PerlHandler "sub { do ’MyTest.pm’; MyTest::handler(shift) }"

do() reloads MyTest.pm on every request.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 92

4.6 __END__ and __DATA__
tokens

Apache::Registry scripts cannot contain __END__ or
__DATA__ tokens.

Remember that:

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";

Under Apache::Registry becomes:

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 93

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 }

So if you happen to put an __END__ tag, like:

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed

It will be turned into:

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 94

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed
 }

When run:

 Missing right bracket at line 4, at end of line

Perl cuts everything after the __END__ tag.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 95

The same applies to the __DATA__ tag.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 96

4.7 Output from system calls
The output of system() , exec() , and
open(PIPE,"|program") calls will not be sent to the
browser

unless your Perl was configured with sfio .

You can use backticks as a possible workaround:

 print ‘command here‘;

But you’re throwing performance out the window either way.

It’s best not to fork at all if you can avoid it.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 97

4.8 Terminating requests and
processes

Perl’s exit() built-in function cannot be used in mod_perl
code.

Using it defeats the object of using mod_perl.

The Apache::exit() function should be used instead.

To make the script work under mod_perl and mod_cgi, do:

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 98

 BEGIN { $USE_MOD_PERL = $ENV{MOD_PERL} ? 1 : 0;}
 use subs qw(exit);

 sub exit{
 $USE_MOD_PERL ? Apache::exit(0) : CORE::exit(0);
 }

You can leave exit() calls in Apache::Registry .

 Apache::exit(-2)
 # or
 Apache::exit(Apache::Constants::DONE)>

will cause the server to exit gracefully, completing the logging
functions and protocol requirements etc.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 99

To shut down the child cleanly after the request was
completed, use the $r->child_terminate method.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 100

4.9 die() and mod_perl
 open FILE, "foo" or die "Cannot open foo file for reading: $!";

will not kill the server if the die() will be called!

When the die() gets triggered:

Apache logs the error message

and calls Apache::exit() instead of real die().

Thus the script stops, but the process doesn’t quit.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 101

4.10 Global Variables
Persistance

The child process doesn’t exit

Global variables persist inside the same process from request
to request.

Don’t rely on the value of the global variable unless it was
initialized at the beginning of the request processing.

Avoid using global variables unless it’s impossible without
them

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 102

They makes code development and debugging harder

Use my() scoped variables wherever you can.

You should be especially careful with Perl special variables
which cannot be lexically scoped.

You have to use local() instead.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 103

4.11 Command line Switches (-w,
-T, etc)

Normally the switches are set via sheband line:

 #!/usr/bin/perl -Tw

mod_perl ignores all switches, but -w if shebang exists.

Most command line switches have a special variable
equivalent.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 104

4.11.1 Warnings
There are three ways to enable warnings under mod_perl:

Locally to a block

This code turns warnings mode On for the scope of the
block.

 {
 local $^W = 1;
 # some code
 }

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 105

This turns it Off :

 {
 local $^W = 0;
 # some code
 }

Without local(), $^W will affect all the requests.

 $^W = 0;

will turn the warnings Off process wide

To turn warnings On for the scope of the whole file, as
with -w , add:

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 106

 local $^W = 1;

at the beginning of the file.

Globally to all Processes

 PerlWarn On

in httpd.conf will turn warnings On in any script.

You can then fine tune your code, turning warnings Off
and On by setting the $^W variable in your scripts.

Locally to a script

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 107

 #!/usr/bin/perl -w

will turn warnings On for the scope of the script.

use $^W to locally modify the warning behavior

On the production server have the warnings off -- keep the
error_log file small.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 108

4.11.2 Taint Mode
Perl’s -T switch enables Taint mode.

Always use this mode on production machines!!!

(See the perlsec manpage for more information)

Perl doesn’t have an equivalent variable for -T

under mod_perl the PerlTaintCheck directive controls this
mode.

 PerlTaintCheck On

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 109

turns the mode on

If you use the -T switch, Perl will warn you that you should
use the PerlTaintCheck configuration directive and will
otherwise ignore it.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 110

4.11.3 Other switches
Finally, if you still need to to set additional perl startup flags
such as -d and -D , you can use an environment variable
PERL5OPT.

Also consult the perlvar manpage for the details about
other switches equivalents.

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 111

;o)

Stas Bekmanmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. Slide 112

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 113

5 RDBMS and mod_perl

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 114

5.1 Apache::DBI - Initiate a
persistent database connection

mod_cgi limitation -- its database connection is not persistent

Apache::DBI removes this limitation.

A database connection persists for the process’ entire life.

Available only under mod_perl

No changes to your code required

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 115

5.1.1 Introduction
The DBI module can make use of the Apache::DBI module.

Detects mod_perl by testing $ENV{MOD_PERL}

Forwards every connect() request to the Apache::DBI
module.

 if ($dbh->ping and
 matched($host,$username,$password,$arguments)){
 return $dbh;
 } else {
 connect() && cache();
 }

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 116

There is no need to delete the disconnect() statements
from your code.

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 117

When should this module be used?

DO use it if you use one connection (or a few) for all your
users.

DO NOT use it if you are opening a special connection for
each of your users.

Why: Each connection will stay persistent.

#conn = #processes * #users

e.g. 20 procs * 100 users = 2000 connections

The number of connections is limited by an SQL engine

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 118

If you have both kinds of apps

Run two Apache/mod_perl servers:

One which uses Apache::DBI

And one which does not.

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 119

5.1.2 Configuration
Install the module

Add to httpd.conf:

 PerlModule Apache::DBI

It is important to load this module before any other
Apache*DBI module and before the DBI module itself!

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 120

5.1.3 Preopening DBI connections
Open connection at a child startup:

 Apache::DBI->connect_on_init
 ("DBI:mysql:myDB::myserver",
 "username",
 "passwd",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 121

Warning: if you call connect_on_init() and your
database is down...

Apache children will be delayed at server startup, trying to
connect...

They won’t begin serving requests until either they are
connected, or the connection attempt fails...

Depending on your DBD driver, this can take several minutes!

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 122

5.1.4 Debugging Apache::DBI
Enable Debug mode in the startup script if something is not
working

 $Apache::DBI::DEBUG = 2;

After setting the DEBUG level view the error_log file

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 123

5.1.5 Opening connections with
different parameters

connect() method should use identical args to get the
connection reused

If one script sets LongReadLen and another one does not,
Apache::DBI will make two different connections.

So for example instead of having a maximum of 40 open
connections, you get 80.

Solution: modify the handle immediately after you get it from
the cache.

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 124

 $dbh->{LongReadLen} = 1;

Always initiate connections using the same parameters and
set LongReadLen (or whatever) afterwards.

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 125

5.1.6 Caching prepare() Statements
Replace prepare() with prepare_cached().

Pros:

Makes sure that you have a good statement handle

and you will get some caching benefit.

Cons:

You are going to pay for DBI to parse your SQL

and do a cache lookup every time you call
prepare_cached().

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 126

;o)

Stas Bekmanmod_perl Tutorial: RDBMS and mod_perl Slide 127

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 128

6 Performance Tuning

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 129

6.1 What we will learn in this
chapter

The Big Picture

Essential Tools

Choosing MaxClients

KeepAlive

Limiting the Size of the Processes

Sharing Memory

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 130

How Shared My Memory Is

Preload Perl modules at server startup

Preload Registry Scripts

Modules Initialization

Keeping the Shared Memory Limit

Limiting the Resources Used by httpd Children

Upload/Download of Big Files

Global vs Fully Qualified Variables

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 131

Forking or Executing subprocesses from mod_perl

Sending plain HTML as a compressed output

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 132

6.2 The Big Picture
The goal: User Experience

There are many factors which affect Web site usability

But speed is one of the most important.

Which speed do we measure?

Start: link has been clicked

Finish: the resulting page has been rendered

The rest is of a little interest to end user

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 133

Take into account more than just the code

NIC and Network: a packet travels from a client and a server
and backwards

Machine’s hardware: Each component can be a bottleneck

Ultrafast webserver but slow modem connection defeats it all
-- a need for a proxy server

Of course the code itself

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 134

 |
 A Web service is
 like a car,
 if one of the
 parts or mechanisms is broken the
 car may ~ not ~ go smoothly and
 it can even stop dead if pushed too
 far without first fixing it !!!
 ___/ ___/

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 135

6.3 Essential Tools
Tools to measure performance

Benchmarking Perl Code

Benchmarking Response Time

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 136

6.3.1 Benchmarking Perl Code
The Benchmark module

The Time::HiRes module where you need better time
precision (<10msec).

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 137

Benchmark.pm :

 use Benchmark;

 timethis (1_000,
 sub {
 my $x = 100;
 my $y = log ($x ** 100) for (0..10000);
 });

 % perl benchmark.pl
 timethis 1000: 25 wallclock secs (24.93 usr + 0.00 sys = 24.93 CPU)

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 138

Time::HiRes :

 use Time::HiRes qw(gettimeofday tv_interval);
 sub sub_that_takes_a_teeny_bit_of_time{1+1;};

 my $start_time = [gettimeofday];
 sub_that_takes_a_teeny_bit_of_time();
 my $end_time = [gettimeofday];

 my $elapsed = tv_interval($start_time,$end_time);
 print "The sub took $elapsed seconds.\n"

 % perl hi-res.pl
 The sub took 0.000262 seconds.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 139

6.3.2 Benchmarking Response
Times
Goals :

Generate parallel requests,

Process the responses and

Print the results of the test.

Options :

Re-use the existing stuff

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 140

Develop your own.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 141

6.3.2.1 ApacheBench

ApacheBench (ab) comes bundled with Apache source
distribution.

Shows Requests/Sec capability of Apache with your code

An example:

Simulate 10 concurrent users.

Each simulated user makes 10 requests.

 % ./ab -n 100 -c 10 www.example.com:81/test/test.pl

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 142

 Document Path: /perl/test.pl
 Document Length: 319 bytes

 Concurrency Level: 10
 Time taken for tests: 0.715 seconds
 Complete requests: 100
 Failed requests: 0
 Total transferred: 60700 bytes
 HTML transferred: 31900 bytes
 Requests per second: 139.86
 Transfer rate: 84.90 kb/s received

 Connection Times (ms)
 min avg max
 Connect: 0 0 3
 Processing: 13 67 71
 Total: 13 67 74

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 143

6.3.2.2 httperf

httperf was written by David Mosberger.

 % httperf --server hostname --port 80 --uri /test.html \
 --rate 150 --num-conn 27000 --num-call 1 --timeout 5

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 144

 Total: connections 27000 requests 26701 replies 26701 test-duration 179.996 s

 Connection rate: 150.0 conn/s (6.7 ms/conn, <=47 concurrent connections)
 Connection time [ms]: min 1.1 avg 5.0 max 315.0 median 2.5 stddev 13.0
 Connection time [ms]: connect 0.3

 Request rate: 148.3 req/s (6.7 ms/req)
 Request size [B]: 72.0

...more

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 145

 Reply rate [replies/s]: min 139.8 avg 148.3 max 150.3 stddev 2.7 (36 samples)
 Reply time [ms]: response 4.6 transfer 0.0
 Reply size [B]: header 222.0 content 1024.0 footer 0.0 (total 1246.0)
 Reply status: 1xx=0 2xx=26701 3xx=0 4xx=0 5xx=0

 CPU time [s]: user 55.31 system 124.41 (user 30.7% system 69.1% total 99.8%)
 Net I/O: 190.9 KB/s (1.6*10^6 bps)

 Errors: total 299 client-timo 299 socket-timo 0 connrefused 0 connreset 0
 Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 146

6.3.3 Using
LWP::Parallel::UserAgent

Write your own tool with LWP::Parallel::UserAgent .

This is a slightly adjusted code originally written by Michael
Schilli

It accepts more than one url to test

The code is in your handouts

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 147

Sample output:

 URL(s): http://www.example.com:81/perl/access/access.cgi
 Total Requests: 100
 Parallel Agents: 10
 Succeeded: 100 (100.00%)
 Errors: NONE
 Total Time: 9.39 secs
 Throughput: 10.65 Requests/sec
 Latency: 0.85 secs/Request

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 148

http://www.example.com:81/perl/access/access.cgi

6.4 Choosing MaxClients
MaxClients sets the limit on the number of simultaneous
requests that can be supported.

We want it to be as small as possible

 Total RAM Dedicated to the Webserver
 MaxClients = ------------------------------------
 MAX child’s process size

An example:

 400MB / 10MB = 40 (clients)

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 149

What if there are more concurrent requests than servers?

This situation is accompanied by the following warning
message in the error_log :

 [Sun Jan 24 12:05:32 1999] [error] server reached MaxClients setting,
 consider raising the MaxClients setting

Connections can be queued through the ListenBacklog
directive.

It is an error because clients are being put in the queue
rather than getting served immediately, despite the fact that
they do not get an error response.

Try not to reach this condition

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 150

Real memory use

Your children can share memory between them when the OS
supports that.

You must take action to allow the sharing to happen.

Code should be preloaded at the server startup

You can raise MaxClients when you get memory shared

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 151

 Total_RAM + Shared_RAM_per_Child * (MaxClients - 1)
 MaxClients = ---
 Max_Process_Size

which is:

 Total_RAM - Shared_RAM_per_Child
 MaxClients = ---------------------------------------
 Max_Process_Size - Shared_RAM_per_Child

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 152

Let’s roll some calculations:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 4Mb

 500 - 4
 MaxClients = --------- = 82
 10 - 4

With no sharing in place

 500
 MaxClients = --------- = 50
 10

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 153

Conclusion: With sharing in place you can have 64% more
servers without adding more RAM.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 154

If you improve sharing and keep the sharing level, let’s say:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 8Mb

 500 - 8
 MaxClients = --------- = 246
 10 - 8

392% more servers!

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 155

6.5 KeepAlive
If your mod_perl server’s httpd.conf includes:

 KeepAlive On
 MaxKeepAliveRequests 100
 KeepAliveTimeout 15

You have a real performance penalty,

The process will wait for KeepAliveTimeout seconds
before closing the connection

With this configuration you will need many more concurrent
processes on a server with high traffic.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 156

Set it Off with:

 KeepAlive Off

the other two directives don’t matter if KeepAlive is Off .

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 157

When you want it Enabled?

A client requests more than one object from your server for a
single HTML page.

You save the HTTP connection overhead for all requests but
the first one.

Example: a page with 10 ad banners

A server will work more effectively if a single process serves
them all during a single connection.

Your client will see a slightly slower response, though

SSL connections benefit the most from KeepAlive in case
you didn’t configure the server to cache session ids.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 158

6.5.1 Be carefull with symbolic links
Apache::Registry caches the scripts based on their URI.

Be ware of symlinks or you will get the same code cached
twice

 % ln -s /home/httpd/perl/news/news.pl /home/httpd/perl/news.pl

Now the script can be reached through the both URIs
/news/news.pl and /news.pl .

The same code will be stored twice in the memory

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 159

Detection :

Use the /perl-status (Apache::Status) handler

http://localhost/perl-status?rgysubs you would see:

 Apache::ROOT::perl::news::news_2epl
 Apache::ROOT::perl::news_2epl

run the server in single mode (httpd -X) to debug.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 160

http://localhost/perl-status?rgysubs

6.6 Limiting the Size of the
Processes

Apache::SizeLimit allows you to kill off Apache httpd
processes if they grow too large.

startup.pl:

 use Apache::SizeLimit; # 10MB
 $Apache::SizeLimit::MAX_PROCESS_SIZE = 10000;

httpd.conf:

 PerlFixupHandler Apache::SizeLimit

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 161

No need for MaxRequestsPerChild anymore!

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 162

6.7 Sharing Memory
Saving memory by sharing it between child processes.

It’s possible only when preloading code at server startup

During a child process’ life, its memory pages becomes
unshared

This process is called Copy-On-Write

Perl doesn’t have strong typed variables.

No clear separation between DATA and CODE memory
pages.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 163

That’s why the Copy-On-Write effect hits almost at random.

which reduces the number of shared memory pages - thus
enlarging the memory demands.

Killing the child and respawning a new one, allows to get the
pristine shared memory from the parent process again.

Try using MaxRequestsPerChild to balance the memory
that stays shared against the time

You should do some measurements and you might see if this
really makes a difference and what a reasonable number
might be.

The newly started child process has all of its memory shared.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 164

MaxRequestsPerChild doesn’t have to be big (10000?)

Having a child serving 300 requests on precompiled code is
already a huge speedup

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 165

6.8 How Shared My Memory Is
How much shared memory do you have?

You can see it by either using the memory utils that comes
with your system like top(1) and ps(1).

or you can deploy GTop module:

 print "Shared memory of the current process: ",
 GTop->new->proc_mem($$)->share,"\n";

 print "Total shared memory: ",
 GTop->new->mem->share,"\n";

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 166

6.9 Keeping the Shared Memory
Limit

Apache::GTopLimit module

like Apache::SizeLimit (max memory limitation)

plus shared memory limitation

In httpd.conf:

 PerlFixupHandler Apache::GTopLimit

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 167

Configuration: startup.pl:

 use Apache::GTopLimit;

 # Control the life based on memory size
 $Apache::GTopLimit::MAX_PROCESS_SIZE = 10000; # 10MB

 # Control the life based on Shared memory size
 $Apache::GTopLimit::MIN_PROCESS_SHARED_SIZE = 4000; # 4MB

 # watch what happens
 $Apache::GTopLimit::DEBUG = 1;

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 168

6.10 Preload Perl modules at
server startup

Use the PerlRequire and PerlModule directives to
preload commonly used modules such as CGI.pm , DBI ...

 PerlModule CGI;
 PerlModule DBI;

Do the same in Perl from startup.pl:

 use DBI;
 use Carp;

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 169

and require the IPreload Registry Scripts

Apache::RegistryLoader compiles
Apache::Registry scripts at server startup.

precompile the scripts just like modules, and save
memory

 use Apache::RegistryLoader ();
 Apache::RegistryLoader->new->handler($url);

Handouts: the code to recursively load of all scripts

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 170

6.11 Modules Initialization
Let’s see how one can calculate the actual improvements
of modules preloading practice.

We will use a very widely used module: DBI

We will try to initialize DBI with the MySQL driver
DBD::mysql

And try to see how it minimizes memory use after forking
the child processes.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 171

In order to have an easy measurement

We will use only one child process

Therefore we will use this setting in httpd.conf:

 MinSpareServers 1
 MaxSpareServers 1
 StartServers 1
 MaxClients 1
 MaxRequestsPerChild 100

or httpd -X (single server mode)

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 172

We always preload these modules:

 use Gtop();
 use Apache::DBI(); # preloads DBI as well

We are going to run memory benchmarks on five
different versions of the startup.pl file:

option 1

Leave the file unmodified.

option 2

Install MySQL driver (we will use MySQL RDBMS
for our test):

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 173

 DBI->install_driver("mysql");

It’s safe to use this method, since just like with
use() , if it can’t be installed it’ll die().

option 3

Preload MySQL driver module:

 use DBD::mysql;

option 4

Use Apache::DBI->connect_on_init()

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 174

No driver is preload before the child gets spawned!

 Apache::DBI->connect_on_init(
 ’DBI:mysql:test::localhost’,
 "",
 "",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes
 # immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

option 5

Options 2 and 4

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 175

The Apache::Registry test script that was used for
testing is in your handouts

The script opens a connection to the database ’test’

issues a query to learn what tables the databases has.

and prints the memory usage

The server was restarted before each new test.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 176

The results sorted by the Diff column:

1.

After the first request:

2.

After the second request (all the subsequent request
showed the same results):

 Test type Size Shared Diff
 --
 install_driver (2) 3465216 2621440 843776
 install_driver & connect_on_init (5) 3461120 2609152 851968
 preload driver (3) 3465216 2605056 860160
 nothing added (1) 3461120 2494464 966656
 connect_on_init (4) 3461120 2482176 978944

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 177

3.

After the second request (all the subsequent request
showed the same results):

 Test type Size Shared Diff
 --
 install_driver (2) 3469312 2609152 860160
 install_driver & connect_on_init (5) 3481600 2605056 876544
 preload driver (3) 3469312 2588672 880640
 nothing added (1) 3477504 2482176 995328
 connect_on_init (4) 3481600 2469888 1011712

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 178

Conclusions :

Only after a second reload we get the final memory
footprint for a specific request in question.

The test with preinstalled driver wins, since it allows to
share more memory.

Since we almost always want to use
connect_on_init() we will go with option number 2.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 179

Given that we have 256M of memory dedicated to
mod_perl processes

The good old equation:

 RAM - largest_shared_size
 N_of Procs = -------------------------
 Diff

 268435456 - 2609152
 (ver 2) N = ------------------- = 309
 860160

 268435456 - 2469888
 (ver 4) N = ------------------- = 262
 1011712

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 180

So you can tell the difference

17% more child processes in the first version

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 181

6.12 Upload/Download of Big
Files

Don’t use mod_perl servers for big file tranfers!

Upload/Download might take minutes

The second saved by mod_perl gives nothing.

The server stays tied and cannot do other more
important work.

Solution: Use plain apache server and mod_cgi.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 182

Assumes that no mod_perl functionality is required (e.g.
auth)

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 183

6.13 Global vs Fully Qualified
Variables

Stay away from global variables when possible.

Sometimes you must have them...

e.g.: @ISA or $VERSION variables (or fully qualified
@MyModule::ISA).

A combination of strict and vars pragmas keeps
modules clean and reduces a bit of noise.

However, vars pragma also creates aliases as the
Exporter does, which eat up more memory.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 184

Use fully qualified names instead of use vars.

Example:

 package MyPackage;
 use strict;
 @MyPackage::ISA = qw(...);
 $MyPackage::VERSION = "1.00";

vs.

 package MyPackage;
 use strict;
 use vars qw(@ISA $VERSION);
 @ISA = qw(...);
 $VERSION = "1.00";

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 185

6.14 Forking or Executing
subprocesses from mod_perl

Process’ forking might be expensive on some systems.

To start a long running process (e.g. sending emails to
many users: No SPAM please!) and let the parent
continue:

spawn a sub-process,

hand it the information it needs to do the task,

and have it detach (close STD* + setsid())

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 186

 $params=FreezeThaw::freeze(
 [all data to pass to the other process]
);
 system("program.pl", $params);

and in program.pl :

 use POSIX qw(setsid);
 @params=FreezeThaw::thaw(shift @ARGV);
 close STDIN;
 close STDOUT;
 close STDERR;
 setsid(); # to detach

At this point, program.pl is running in the
‘‘background’’ while the system() returns and permits
Apache to get on with life.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 187

This has obvious problems.

Shell limitation on the size of @params.

Also, the communication is only one way.

For fast execution of the postprocess code use
PerlCleanupHandler

But you will keep the process busy, which is not a good
idea...

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 188

Forking example :

 if (fork){
 #do nothing
 } else {
 system("echo Hi");
 CORE::exit(0);
 }

Parent immediately continues with the code that comes
up after the fork

Child executes system("echo Hi") and then
terminates itself.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 189

!!!: use CORE::exit (exit() == Apache::exit under
Registry and friends)

...now the gory details:

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 190

6.14.1 Freeing the Parent Process
Closing all the inherited communication pipes opened by
the parent.

allow the parent to complete the request and free itself
for serving other requests.

the spawned process also inherits the file descriptor
that’s tied to the socket through which all the
communications between the server and the client
happen.

If this socket is not freed, the server cannot be restarted:

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 191

 [Mon Dec 11 19:04:13 2000] [crit]
 (98)Address already in use: make_sock:
 could not bind to address 127.0.0.1 port 8000

Apache::SubProcess::cleanup_for_exec()
takes care of it:

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 192

 use Apache::SubProcess;
 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 $r->cleanup_for_exec(); # untie the socket
 chdir ’/’ or die "Can’t chdir to /: $!";
 close STDIN;
 close STDOUT;
 close STDERR;
 # some code comes here
 CORE::exit(0);
 }

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 193

6.14.2 Detaching the Forked
Process

The parent cannot continue before the child detaches.

If the parent is restarted, the child process gets killed

 use POSIX ’setsid’;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 setsid or die "Can’t start a new session: $!";
 ...
 }

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 194

The spawned child process has a life of its own

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 195

6.14.3 Avoiding Zombie
Processes

Normally, every process has its parent.

Many processes are children of the init process,
whose PID equals to 1.

When you fork a process you must wait() or
waitpid() for it to finish.

If you don’t wait for it becomes a zombie.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 196

Zombie, is a process that doesn’t have a father.

When the child quits, it reports the termination to his
parent.

If no one wait()s to collect the exit status of the child, it
gets ‘‘confused’’ and becomes a ghost process, that can
be seen, but not killed.

Ghostbuster: It will be killed only when you stop the httpd
process that spawned it!

top(1)/ps(1) mark those processes as <defunc >.

Zombies counter in top(1) goes up

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 197

These zombie processes can take up system resources
and are generally undesirable.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 198

The proper fork is:

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
 } else {
 # do something
 CORE::exit(0);
 }

But in most cases the only reason you would want to fork
is when you need to spawn a process that would take a
lot of time to complete.

So if the server child that spawns this process has to wait
for it to finish, you gained nothing.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 199

You cannot neither wait for its completion, nor continue
because you will get yet another zombie process.

The simplest solution is to ignore your dead children:

 $SIG{CHLD} = IGNORE;

All the processes will be collected by the init process
and prevent from them to become zombies.

... however this doesn’t work everywhere.

You cannot localize this setting with local() . If you do,
it wouldn’t take the desired effect.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 200

The child must close all the pipes to the connection
socket that were opened by the parent process (STDIN
and STDOUT)

You may need to close and reopen a STDERR filehandler

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 201

So now the code would look like:

 $SIG{CHLD} = IGNORE;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 print "Parent has finished\n";
 } else {
 close STDIN;
 close STDOUT;
 close STDERR;
 # do something
 CORE::exit(0);
 }

Notice that waitpid() call has gone

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 202

A double fork approach:

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 } else {
 defined (my $grandkid = fork) or die "Kid cannot fork: $!\n";
 if ($grandkid) {
 CORE::exit(0);

 } else {
 # code here
 close STDIN;
 close STDOUT;
 close STDERR;
 # do something long lasting
 CORE::exit(0);
 }
 }

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 203

Grandkid becomes a "child of init" (parent process ID is
1).

Note that the last two solutions do allow you to know the
exit status of the process, but in our case we don’t want
to.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 204

use a different SIGCHLD handler:

 use POSIX ’WNOHANG’;
 $SIG{CHLD} = sub { while(waitpid(-1,WNOHANG)>0) {} };

Which is usefull when you fork() more than once
process.

The arguments tell waitpid() to reap the next child
that’s available,

and prevent the call from blocking if there happens to be
no child ready from reaping.

The handler will loop untill waitpid() returns a
negative number or zero, indicating that no more
reapable children remain.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 205

6.14.4 A Complete Fork Example
Your handouts include the complete example covering all
the nuances discussed so far.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 206

6.15 Sending plain HTML as a
compressed output

HTML files with JS code are huge!!!

Compressing them will allow us to deliver them to users
much faster

java applets can be compressed into a jar and benefit
from a faster download times.

ASCII text can be compressed by a factor of 10.

Apache::GzipChain comes to help you with this task.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 207

If a client (browser) understands gzip encoding this
module compresses the output and sends it downstream.

The client decompresses the data upon receive and
renders the HTML as if it was a plain HTML fetch.

For example to compress all html files on the fly, do:

 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::PassFile
 </Files>

Watch an access_log file to see how many bytes were
actually send, compare with a regular configuration send.

Remember that it will work only if the browser claims to
accept compressed input, thru Accept-Encoding
header.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 208

Apache::GzipChain keeps a list of user-agents, thus it
also looks at User-Agent header, for known to accept
compressed output browsers.

For example if you want to return compressed files which
should pass in addition through Embperl module, you
would write:

 <Location /test>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::EmbperlChain Apache::PassFile
 </Location>

See perldoc Apache::GzipChain

Notice that the rightmost PerlHandler must be a content
producer. Use Apache::PassFile or another similar
module.

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 209

;o)

Stas Bekmanmod_perl Tutorial: Performance Tuning Slide 210

		1€€Agenda

		1.1€€Agenda

		1.2€€Off-tutorial reading

		2€€Getting Started Fast

		2.1€€mod_perl in Four Slides

		2.2€€What is mod_perl?

		2.3€€Installation

		2.4€€Configuration

		2.5€€The "mod_perl rules" Apache::Registry Scripts

		2.6€€The "mod_perl rules" Apache Perl Module

		2.7€€Is That All I Need To Know About mod_perl?

		3€€Server Setup Strategies

		3.1€€What we will learn in this chapter

		3.2€€mod_perl Deployment Overview

		3.3€€Standalone mod_perl Enabled Apache Server

		3.4€€One Plain Apache and One mod_perl-enabled Apache Servers

		3.5€€Adding a Proxy Server in http Accelerator Mode

		3.6€€Implementations of Proxy Servers

		4€€Porting from CGI Scripts and mod_perl Coding Guidelines.

		4.1€€What we will learn in this chapter

		4.2€€Exposing Apache::Registry secrets

		4.2.1€€The First Mystery

		4.2.2€€The Second Mystery

		4.3€€Sometimes it Works, Sometimes it Doesn't

		4.3.1€€Regular Expression Memory

		4.4€€@INC and mod_perl

		4.5€€Reloading Modules and Required Files

		4.5.1€€Restarting the server

		4.5.2€€Using Apache::StatINC for the Development Process

		4.5.3€€Using Apache::Reload

		4.5.4€€Reloading handlers

		4.6€€__END__ and __DATA__ tokens

		4.7€€Output from system calls

		4.8€€Terminating requests and processes

		4.9€€die†‡ and mod_perl

		4.10€€Global Variables Persistance

		4.11€€Command line Switches †-w, -T, etc‡

		4.11.1€€Warnings

		4.11.2€€Taint Mode

		4.11.3€€Other switches

		5€€RDBMS and mod_perl

		5.1€€Apache::DBI - Initiate a persistent database connection

		5.1.1€€Introduction

		5.1.2€€Configuration

		5.1.3€€Preopening DBI connections

		5.1.4€€Debugging Apache::DBI

		5.1.5€€Opening connections with different parameters

		5.1.6€€Caching prepare†‡ Statements

		6€€Performance Tuning

		6.1€€What we will learn in this chapter

		6.2€€The Big Picture

		6.3€€Essential Tools

		6.3.1€€Benchmarking Perl Code

		6.3.2€€Benchmarking Response Times

		6.3.2.1€€ApacheBench

		6.3.2.2€€httperf

		6.3.3€€Using LWP::Parallel::UserAgent

		6.4€€Choosing MaxClients

		6.5€€KeepAlive

		6.5.1€€Be carefull with symbolic links

		6.6€€Limiting the Size of the Processes

		6.7€€Sharing Memory

		6.8€€How Shared My Memory Is

		6.9€€Keeping the Shared Memory Limit

		6.10€€Preload Perl modules at server startup

		6.11€€Modules Initialization

		6.12€€Upload/Download of Big Files

		6.13€€Global vs Fully Qualified Variables

		6.14€€Forking or Executing subprocesses from mod_perl

		6.14.1€€Freeing the Parent Process

		6.14.2€€Detaching the Forked Process

		6.14.3€€Avoiding Zombie Processes

		6.14.4€€A Complete Fork Example

		6.15€€Sending plain HTML as a compressed output

