

O’Reilly Open Source Convention
July 23, 2001

San Diego, CA

Tutorial : Getting started with mod_perl

by Stas Bekman
http://stason.org/

<stas@stason.org>
Senior Software Engineer, eXtropia.com

This talk is available from: http://stason.org/talks/

110 May 2001

Tutorial: Getting started with mod_perl

This document is originally written in POD, converted to HTML , PostScript and PDF by
Pod::HtmlP sPdf Perl module.

(you will find a Table of Contents at the end of the Tutorial)

10 May 20012

Stas Bekman

1 Agenda

310 May 2001

1 Agendamod_perl Tutorial: Agenda

1.1 Agenda

I will start the presentation with a very basic introduction into mod_perl, 10 lines installation
instructions, a simple configuration and a few code examples. These should help you get your
feet wet if you are really new to mod_perl.

Afterwards I’ll talk about the machine setups most popular servers use. I’ll explain the incentives
for having the light Apache and the heavy mod_perl servers serving different kinds of requests.
We will see the two major setups, one using squid as a front-end machine, and the other plain
Apache server with mod_proxy.

Then we will see some mod_perl peculiarities you should know about, will talk about the
modules which allows you to run your CGI scripts unaltered.

Afterwards I’ll talk about boosting a performance of web applications working with RDBMS
databases under mod_perl. We will see what modules allow us to make the work with database
faster.

Finally we will see some performance improvement tips, these should get you programmers
produce more efficient code. We will how one should measure performance and DO’s and
DON’T’s to make the code run faster and use less memory.

The are two more sections left for the post-conference reading. The first one is a Perl reference.
It’s talking about Perl stuff which is very important to know when coding for mod_perl. And the
other one includes additional information about mod_perl and related products resources. You
should use it to find your way to find the answer to the questions that you might need to get
answered, on your way to becoming a mod_perl guru or when you need some general help.

;o)

10 May 20014

Stas Bekman1.1 Agenda

2 Getting Started Fast

510 May 2001

2 Getting Started Fastmod_perl Tutorial: Getting Started Fast

2.1 mod_perl in Four Slides
Each tutorial will concentrate on different aspects of running a mod_perl server and mod_perl
programming. In case you don’t know how to get started with it, or you think it’s a diffi cult task, these
slides will take away any worries you might have had when you came to this tutorial.

In just four slides you will be able to install and configure a mod_perl server. And, of course, to write
new code and reuse the existing code under mod_perl.

The four slides (sections) are:

Installation

Configuration

The ‘‘mod_perl rules’’ Apache::Registry Scripts

The ‘‘mod_perl rules’’ Apache Perl Module

2.2 What is mod_perl?
But before we go any further, there is a chance that you don’t know what mod_perl is. So let’s make a
little introduction to mod_perl.

Everybody knows that Perl scripts running under mod_cgi have numerous shortcomings. There are
many of them, but code recompilation and Perl interpreter loading overhead at each request is the
hardest one to overcome.

Among various attempts to improve on mod_cgi’s shortcomings, mod_perl has proved to be one of
the better ones and has been widely adopted by CGI developers. According to the
http://perl.apache.org/netcraft/ as of January 2001 about 2 million hosts use mod_perl. Doug
MacEachern fathered the core code of this Apache module and licensed it under the Apache Software
License.

mod_perl does away with mod_cgi’s forking by reusing the existing child processes. In this new
model, the child process doesn’t exit anymore when it has processed a request. The Perl interpreter is
loaded only once, when the process is started. Since the interpreter is persistent throughout the
process’ lifetime, all code is loaded and compiled only once, the first time it is seen. This makes all
subsequent requests run much faster because everything is already loaded and compiled. Response
processing is now reduced to running your code. This improves response times by a factor of 10 to
100, depending on the code being executed.

Doug didn’t stop here, he went and extended mod_cgi’s functionality by adding a complete Perl API
to the Apache core. This makes it possible to write a complete Apache module in Perl, a feat that used
to require coding in C. From then on mod_perl enabled the programmer to handle all phases of request
processing in Perl.

The new Perl API also allows complete server configuration in Perl. This has which made the lives of
many server administrators much easier, as they could now benefit from dynamically generating the
configuration, freed from hunting for bugs in huge configuration files full of similar directives for
virtual hosts and the like.

10 May 20016

Stas Bekman2.1 mod_perl in Four Slides

http://perl.apache.org/netcraft/

To provide backwards compatibility for plain CGI scripts that used to be run under mod_cgi, while
still benefit ing from a preloaded perl and modules, a few special handlers were written, each allowing
a different level of proximity to pure mod_perl functionality. Some take full advantage of mod_perl,
while others only a partial one.

mod_perl embeds a copy of the Perl interpreter into the Apache httpd executable, providing complete
access to Perl functionality within Apache. This enables a set of mod_perl-specific configuration
directives, all of which start with the string Perl*. Most, but not all, of these directives are used to
specify handlers for various phases of the request.

It might occur to you that sticking a large executable (Perl) into another large executable (Apache)
makes a very, very large program. mod_perl certainly makes httpd significantly bigger and you will
need more RAM on your production server to be able to run many mod_perl processes, but in reality
the situation is different. Since mod_perl processes requests much faster, the number of the processes
needed to handle the same request rate is much lower relative to the mod_cgi approach. Generally you
need slightly more memory available, and the speed improvements you will see are well worth every
megabyte of memory you can add.

Now let’s get back to the All-In-Four-Slides...

2.3 Installation
Did you know that it takes about 10 minutes to build and install a mod_perl enabled Apache server on
a computer with a pretty average processor and a decent amount of system memory? It goes like this:

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
 % tar xzvf apache_x.x.x.tar.gz
 % tar xzvf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

That’s all!

Of course you must replace x.x.x with the actual version numbers of the mod_perl and Apache
releases that you use.

The GNU tar utility knows how to uncompress a gzipped tar archive (use the z option).

All that’s left is to add a few configuration lines to a httpd.conf, an Apache configuration file, start the
server and enjoy mod_perl.

710 May 2001

2.3 Installationmod_perl Tutorial: Getting Started Fast

http://www.apache.org/dist/apache_x.x.x.tar.gz

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz

2.4 Configuration
Add the following to the configuration file httpd.conf:

 # for Apache::Registry mode
 Alias /perl/ /home/httpd/perl/

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes every URI starting with /perl to be handled by the Apache mod_perl
module. It will use the handler from the Perl module Apache::Registry .

2.5 The "mod_perl rules" Apache::Registry Scripts
You can write plain perl/CGI scripts just as under mod_cgi:

 mod_perl_rules1.pl

 print "Content-type: text/plain\r\n\r\n";
 print "mod_perl rules!\n";

Of course you can write them in the Apache Perl API:

 mod_perl_rules2.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);
 $r->print("mod_perl rules!\n");

Save both files under the /home/httpd/perl directory, make them executable and readable by server,
and issue these requests using your favorite browser:

 http://localhost/perl/mod_perl_rules1.pl
 http://localhost/perl/mod_perl_rules2.pl

In both cases you will see on the following response:

 mod_perl rules!

10 May 20018

Stas Bekman2.4 Configuration

http://localhost/perl/mod_perl_rules1.pl

http://localhost/perl/mod_perl_rules2.pl

2.6 The "mod_perl rules" Apache Perl Module
To create an Apache Perl module, all you have to do is to wrap the code into a handler subroutine
and return the status to the server.

 ModPerl/Rules.pm

 package ModPerl::Rules;
 use Apache::Constants;

 sub handler{
 my $r = shift;
 $r->send_http_header(’text/plain’);
 print "mod_perl rules!\n";
 return OK;
 }
 1;

Create a directory called ModPerl under one of the directories in @INC, and put Rules.pm into it. Then
add the following snippet to httpd.conf:

 PerlModule ModPerl::Rules
 <Location /mod_perl_rules>
 SetHandler perl-script
 PerlHandler ModPerl::Rules
 </Location>

Now you can issue a request to:

 http://localhost/mod_perl_rules

and just as with our mod_perl_rules.pl scripts you will see:

 mod_perl rules!

as the response.

2.7 Is That All I Need To Know About mod_perl?
Definitely not!

These slides are intended to show you that you can install and start using a mod_perl server within 30
minutes of downloading the sources.

There is much more to mod_perl than this, you will need to plan your study around the projects you
want to implement. Fortunately, there are many resources and lots of help freely available to you.

At the end of this titorial you will find a chapter describing the available resources and pointers to
them.

910 May 2001

2.6 The "mod_perl rules" Apache Perl Modulemod_perl Tutorial: Getting Started Fast

http://localhost/mod_perl_rules

;o)

10 May 200110

Stas Bekman2.7 Is That All I Need To Know About mod_perl?

3 Server Setup Strategies

1110 May 2001

3 Server Setup Strategiesmod_perl Tutorial: Server Setup Strategies

3.1 What we will learn in this chapter
mod_perl Deployment Overview

Standalone mod_perl Enabled Apache Server

One Plain Apache and One mod_perl-enabled Apache Servers

Adding a Proxy Server in http Accelerator Mode

Implementations of Proxy Servers

3.2 mod_perl Deployment Overview
There are several different ways to build, configure and deploy your mod_perl enabled server. Some
of them are:

1.

Having one binary and one configuration file (one big binary for mod_perl).

2.

Having two binaries and two configuration files (one big binary for mod_perl and one small
binary for static objects like images.)

3.

Any of the above plus a reverse proxy server in http accelerator mode.

3.3 Standalone mod_perl Enabled Apache Server
The first approach is to implement a straightforward mod_perl server. Just take your plain apache
server and add mod_perl, like you add any other apache module. You continue to run it at the port it
was running before. You probably want to try this before you proceed to more sophisticated and
complex techniques.

The advantages:

Simplicity. You just follow the installation instructions, configure it, restart the server and you
are done.

No network changes. You do not have to worry about using additional ports as we will see later.

10 May 200112

Stas Bekman3.1 What we will learn in this chapter

Speed. You get a very fast server, you see an enormous speedup from the first moment you start
to use it.

The disadvantages:

The process size of a mod_perl-enabled Apache server is huge (maybe 4Mb at startup and
growing to 10Mb and more, depending on how you use it) compared to the typical plain Apache.
Of course if memory sharing is in place, RAM requirements will be smaller.

You probably have a few tens of child processes. The additional memory requirements add up in
direct relation to the number of child processes. Your memory demands are growing by an order
of magnitude, but this is the price you pay for the additional performance boost of mod_perl.
With memory prices so cheap nowadays, the additional cost is low -- especially when you
consider the dramatic performance boost mod_perl gives to your services with every 100Mb of
RAM you add.

While you will be happy to have these monster processes serving your scripts with monster
speed, you should be very worried about having them serve static objects such as images and
html files. Each static request served by a mod_perl-enabled server means another large process
running, competing for system resources such as memory and CPU cycles. The real overhead
depends on static objects request rate. Remember that if your mod_perl code produces HTML
code which includes images, each one will turn into another static object request. Having another
plain webserver to serve the static objects solves this unpleasant obstacle. Having a proxy server
as a front end, caching the static objects and freeing the mod_perl processes from this burden is
another solution. We will discuss both below.

Another drawback of this approach is that when serving output to a client with a slow connection,
the huge mod_perl-enabled server process (with all of its system resources) will be tied up until
the response is completely written to the client. While it might take a few milliseconds for your
script to complete the request, there is a chance it will be still busy for some number of seconds
or even minutes if the request is from a slow connection client. As in the previous drawback, a
proxy solution can solve this problem. More on proxies later.

Proxying dynamic content is not going to help much if all the clients are on a fast local net (for
example, if you are administering an Intranet.) On the contrary, it can decrease performance.
Still, remember that some of your Intranet users might work from home through slow modem
links.

If you are new to mod_perl, this is probably the best way to get yourself started.

And of course, if your site is serving only mod_perl scripts (close to zero static objects, like images),
this might be the perfect choice for you!

1310 May 2001

3.3 Standalone mod_perl Enabled Apache Servermod_perl Tutorial: Server Setup Strategies

3.4 One Plain Apache and One mod_perl-enabled Apache
Servers
As I have mentioned before, when running scripts under mod_perl, you will notice that the httpd
processes consume a huge amount of virtual memory, from 5Mb to 15Mb and even more. That is the
price you pay for the enormous speed improvements under mod_perl. (Again -- shared memory keeps
the real memory that is being used much smaller :)

Using these large processes to serve static objects like images and html documents is overkill. A better
approach is to run two servers: a very light, plain apache server to serve static objects and a heavier
mod_perl-enabled apache server to serve requests for dynamic (generated) objects (aka CGI).

From here on, I will refer to these two servers as httpd_docs (vanilla apache) and httpd_perl
(mod_perl enabled apache).

The advantages:

The heavy mod_perl processes serve only dynamic requests, which allows the deployment of
fewer of these large servers.

MaxClients , MaxRequestsPer Child and related parameters can now be optimally tuned
for both httpd_docs and httpd_perl servers, something we could not do before. This
allows us to fine tune the memory usage and get a better server performance.

Now we can run many lightweight httpd_docs servers and just a few heavy httpd_perl
servers.

An impor tant note: When a user browses static pages and the base URL in the Location window
points to the static server, for example http://www.nowhere.com/index.html -- all relative
URLs (e.g.) are being served by the light plain apache
server. But this is not the case with dynamically generated pages. For example when the base URL in
the Location window points to the dynamic server -- (e.g.
http://www.nowhere.com:8080/perl/index.pl) all relative URLs in the dynamically
generated HTML will be served by the heavy mod_perl processes. You must use fully qualified URLs
and not relative ones! http://www.nowhere.com/icons/arrow.gif is a full URL, while
/icons/arrow.gif is a relative one. Using <BASE
HREF="http://www.nowhere.com/" > in the generated HTML is another way to handle this
problem. Also the httpd_perl server could rewrite the requests back to httpd_docs (much
slower) and you still need the attention of the heavy servers. This is not an issue if you hide the inter-
nal port implementations, so the client sees only one server running on port 80 .

The disadvantages:

10 May 200114

Stas Bekman3.4 One Plain Apache and One mod_perl-enabled Apache Servers

An administration overhead.

The need for two sets of controlling scripts (startup/shutdown) and watchdogs.

If you are processing log files, now you probably will have to merge the two separate log
files into one before processing them.

Just as in the one server approach, we still have the problem of a mod_perl process spending its
precious time serving slow clients, when the processing portion of the request was completed a
long time ago. Deploying a proxy solves this, and will be covered in the next section.

As with the single server approach, this is not a major disadvantage if you are on a fast network
(i.e. Intranet). It is likely that you do not want a buffering server in this case.

3.5 Adding a Proxy Server in http Accelerator Mode
At the beginning there were 2 servers: one plain apache server, which was very light, and configured
to serve static objects, the other mod_perl enabled (very heavy) and configured to serve mod_perl
scripts. We named them httpd_docs and httpd_perl respectively.

The two servers coexist at the same IP address by listening to different ports: httpd_docs listens to
port 80 (e.g. http://www.nowhere.com/images/test.gif) and httpd_perl listens to port 8080 (e.g.
http://www.nowhere.com:8080/perl/test.pl). Note that I did not write http://www.nowhere.com:80 for
the first example, since port 80 is the default port for the http service. Later on, I will be changing the
configuration of the httpd_docs server to make it listen to port 81.

Now I am going to convince you that you want to use a proxy server (in the http accelerator mode).
The advantages are:

Allow serving of static objects from the proxy’s cache (objects that previously were entirely
served by the httpd_docs server).

You get less I/O activity reading static objects from the disk (proxy serves the most ‘‘popular’’
objects from RAM - of course you benefit more if you allow the proxy server to consume more
RAM). Since you do not wait for the I/O to be completed you are able to serve static objects
much faster.

And the extra functionality provided by the http-acceleration mode, which makes the proxy
server act as a sort of output buffer for the dynamic content. The mod_perl server sends the entire
response to the proxy and is then free to deal with other requests. The proxy server is responsible
for sending the response to the browser. So if the transfer is over a slow link, the mod_perl server

1510 May 2001

3.5 Adding a Proxy Server in http Accelerator Modemod_perl Tutorial: Server Setup Strategies

http://www.nowhere.com/images/test.gif

http://www.nowhere.com:8080/perl/test.pl

http://www.nowhere.com:80/

is not waiting around for the data to move.

Using numbers is always more convincing than just words. So we are going to show a simple
example from the real world.

First let’s explain the abbreviation used in the networking world. If someone claims to have a 56
kbps connection -- it means that the connection is of 56 killo-bits per second (~56000 bits/sec).
It’s not 56 killo-bytes per second, but 7 killo-bytes per second, because 1 byte equals to 8 bits. So
don’t let the merchants fool you--your modem gives you 7 killo-bytes per second connection at
most and not 56 killo-bytes per second as one might think.

So here is the real world example. Let’s look at the typical scenario with a user connected to your
site with 56Kbps modem. It means that the speed of the user’s link is 56/8 = 7KBytes per sec.
Let’s assume an average generated HTML page to be of 42KB and an average mod_perl script
that generates this response in 0.5 second. How many responses this script could produce during
the time it took for the output to be delivered to user? A simple calculation reveals pretty scary
numbers:

 42KB / (0.5s * 7KB/s) = 12

12 other dynamic requests could be served at the same time, if we could put mod_perl to do only
what it’s best at: generating responses.

This very simple example shows us that we need only one twelfth the number of children
running, which means that we will need only one twelfth of the memory (not quite true because
some parts of the code are shared).

But you know that nowadays scripts often return pages which are blown up with javascript code
and similar, which can make them 100kb size and the download time will be of the order of...
(This calculation is left to you as an exercise :)

Moreover many users like to open many browser windows and do many things at once (down-
load files and browse graphically heavy sites). So in the speed of 7KB/sec we have assumed
before, may in reality be 5-10 times slower.

We are going to hide the details of the server’s implementation. Users will never see ports in the
URLs (more on that topic later). You can have a few boxes serving the requests, and only one
serving as a front end, which spreads the jobs between the servers in a way that you can control.
You can actually shut down a server, without the user even noticing, because the front end server
will dispatch the jobs to other servers.

For security reasons, using any httpd accelerator (or a proxy in httpd accelerator mode) is essen-
tial because you do not let your internal server get directly attacked by arbitrary packets from
whomever. The httpd accelerator and internal server communicate in expected HTTP requests.
This allows for only your public ‘‘bastion’’ accelerating www server to get hosed in a successful
attack, while leaving your internal data safe.

10 May 200116

Stas Bekman3.5 Adding a Proxy Server in http Accelerator Mode

The disadvantages are:

Of course there are drawbacks. Luckily, these are not functionality drawbacks, but they are more
administration hassle. You have another daemon to worry about, and while proxies are generally
stable, you have to make sure to prepare proper startup and shutdown scripts, which are run at
boot and reboot as appropriate. Also, you might want to set up the crontab to run a watchdog
script.

Proxy servers can be configured to be light or heavy, the admin must decide what gives the
highest performance for his application. A proxy server like Squid is light in the concept of
having only one process serving all requests. But it can appear pretty heavy when it loads objects
into memory for faster service.

Have I succeeded in convincing you that you want a proxy server?

If you are on a local area network (LAN), then the big benefit of the proxy buffering the output and
feeding a slow client is gone. You are probably better off sticking with a straight mod_perl server in
this case.

3.6 Implementations of Proxy Servers
As of this writing, two proxy implementations are known to be widely used with mod_perl - squid
proxy server and mod_proxy which is a part of the apache server. Let’s compare them.

3.6.1 The Squid Server

The Advantages:

Caching of static objects. These are served much faster, assuming that your cache size is big
enough to keep the most frequently requested objects in the cache.

Buffering of dynamic content, by taking the burden of returning the content generated by
mod_perl servers to slow clients, thus freeing mod_perl servers from waiting for the slow clients
to download the data. Freed servers immediately switch to serve other requests, thus your number
of required servers goes down dramatically.

Non-linear URL space / server setup. You can use Squid to play some tricks with the URL space
and/or domain based virtual server support.

The Disadvantages:

1710 May 2001

3.6 Implementations of Proxy Serversmod_perl Tutorial: Server Setup Strategies

Proxying dynamic content is not going to help much if all the clients are on a fast local net. Also,
a message on the squid mailing list implied that squid only buffers in 16k chunks so it would not
allow a mod_perl to complete immediately if the output is larger.

Speed. Squid is not very fast today when compared with the plain file based web servers avail-
able. Only if you are using a lot of dynamic features such as mod_perl or similar is there a reason
to use Squid, and then only if the application and the server are designed with caching in mind.

Memory usage. Squid uses quite a bit of memory.

HTTP protocol level. Squid is pretty much a HTTP/1.0 server, which seriously limits the
deployment of HTTP/1.1 features.

HTTP headers, dates and freshness. The squid server might give out stale pages, confusing down-
stream/client caches.(You update some documents on the site, but squid will still serve the old
ones.)

Stability. Compared to plain web servers, Squid is not the most stable.

The pros and cons presented above lead to the idea that you might want to use squid for its dynamic
content buffering features, but only if your server serves mostly dynamic requests. So in this situation,
when performance is the goal, it is better to have a plain apache server serving static objects, and squid
proxying the mod_perl enabled server only.

3.6.2 Apache’s mod_proxy

I do not think the difference in speed between apache’s mod_proxy and squid is relevant for most
sites, since the real value of what they do is buffering for slow client connections. However, squid
runs as a single process and probably consumes fewer system resources.

The trade-off is that mod_rewrite is easy to use if you want to spread parts of the site across different
back end servers, while mod_proxy knows how to fix up redirects containing the back-end server’s
idea of the location. With squid you can run a redirector process to proxy to more than one back end,
but there is a problem in fixing redirects in a way that keeps the client’s view of both server names and
port numbers in all cases.

The diffi cult case is where:

You have DNS aliases that map to the same IP address and

10 May 200118

Stas Bekman3.6.2 Apache’s mod_proxy

You want the redirect to port 80 and

The server is on a differ ent port and

You want to keep the specific name the browser has already sent, so that it does not change
in the client’s Location window.

The Advantages:

No additional server is needed. We keep the one plain plus one mod_perl enabled apache servers.
All you need is to enable mod_proxy in the httpd_docs server and add a few lines to
httpd.conf file.

The Prox yPass and Prox yPass Reverse directives allow you to hide the internal redirects,
so if http://nowhere.com/modperl/ is actually http://local -
host :81/modperl/ , it will be absolutely transparent to the user. Prox yPass redirects the
request to the mod_perl server, and when it gets the response, Prox yPass Reverse rewrites
the URL back to the original one, e.g:

 ProxyPass /modperl/ http://localhost:81/modperl/
 ProxyPassReverse /modperl/ http://localhost:81/modperl/

It does mod_perl output buffering like squid does.

It even does caching. You have to produce correct Content-Length , Last-Modi fied and
Expires http headers for it to work. If some of your dynamic content does not change
frequently, you can dramatically increase performance by caching it with Prox yPass .

Prox yPass happens before the authentication phase, so you do not have to worry about authen-
ticating twice.

Apache is able to accelerate secure HTTP requests completely, while also doing accelerated
HTTP. With Squid you have to use an external redirection program for that.

The latest (apache 1.3.6 and later) Apache proxy accelerated mode is reported to be very stable.

;o)

1910 May 2001

3.6.2 Apache’s mod_proxymod_perl Tutorial: Server Setup Strategies

http://localhost:81/modperl/

http://localhost:81/modperl/

4 Porting from CGI Scripts and mod_perl Coding
Guidelines.

10 May 200120

Stas Bekman4 Porting from CGI Scripts and mod_perl Coding Guidelines.

4.1 What we will learn in this chapter
Exposing Apache::Registry secrets

Sometimes it Works, Sometimes it Doesn’t

@INC and mod_perl

Reloading Modules and Required Files

__END__ and __DATA__ tokens

Output from system calls

Terminating requests and processes

die() and mod_perl

Global Variables Persistance

Command line Switches (-w, -T, etc)

4.2 Exposing Apache::Registry secrets
Let’s start with some simple code and see what can go wrong with it, detect bugs and debug them,
discuss possible pitfalls and how to avoid them.

I will use a simple CGI script, that initializes a $counter to 0, and prints its value to the browser
while incrementing it.

 counter.pl:

 use strict;

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0;

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }

You would expect to see the output:

 Counter is equal to 1 !
 Counter is equal to 2 !
 Counter is equal to 3 !
 Counter is equal to 4 !
 Counter is equal to 5 !

2110 May 2001

4.1 What we will learn in this chaptermod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.

And that’s what you see when you execute this script the first time. But let’s reload it a few times...
See, suddenly after a few reloads the counter doesn’t start its count from 1 any more. We continue to
reload and see that it keeps on growing, but not steadily starting almost randomly at 10, 10, 10, 15,
20... Weird...

 Counter is equal to 6 !
 Counter is equal to 7 !
 Counter is equal to 8 !
 Counter is equal to 9 !
 Counter is equal to 10 !

We saw two anomalies in this very simple script: Unexpected increment of our counter over 5 and
inconsistent growth over reloads. Let’s investigate this script.

4.2.1 The First Mystery

First let’s peek into the error_log file. Since we have enabled the warnings what we see is:

 Variable "$counter" will not stay shared
 at /home/httpd/perl/conference/counter.pl line 13.

The Variable "$counter" will not stay shared warning is generated when the script contains a named
nested subroutine (a named - as opposed to anonymous - subroutine defined inside another subroutine)
that refers to a lexically scoped variable defined outside this nested subroutine. This effect is explained
in the Perl Reference section at the end of this handout.

Do you see a nested named subroutine in my script? I don’t! What’s going on? Maybe it’s a bug? But
wait, maybe the perl interpreter sees the script in a different way, maybe the code goes through some
changes before it actually gets executed? The easiest way to check what’s actually happening is to run
the script with a debugger.

But since we must debug it when it’s being executed by the webserver, a normal debugger won’t help,
because the debugger has to be invoked from within the webserver. Luckily Doug MacEachern wrote
the Apache::DB module and we will use this to debug my script. While Apache::DB allows you
to debug the code interactively, we will do it non-interactively.

Modify the httpd.conf file in the following way:

 PerlSetEnv PERLDB_OPTS "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1 frame=2"
 PerlModule Apache::DB
 <Location /perl>
 PerlFixupHandler Apache::DB
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 </Location>

Restart the server and issue a request to counter.pl as before. On the surface nothing has changed--we
still see the correct output as before, but two things happened in the background:

10 May 200122

Stas Bekman4.2.1 The First Mystery

Firstly, the file /tmp/db.out was written, with a complete trace of the code that was executed.

Secondly, error_log now contains the real code that was actually executed. This is produced as a side
effect of reporting the Variable "$counter" will not stay shared at... warning that we saw earlier.

Here is the code that was actually executed:

 package Apache::ROOT::perl::conference::counter_2epl;
 use Apache qw(exit);
 sub handler {
 BEGIN {
 $^W = 1;
 };
 $^W = 1;

 use strict;

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0;

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }
 }

The code in the error.log wasn’t indented. I’ve indented it for you to stress that the code was wrapped
inside the handler() subroutine.

What do we learn from this?

Well firstly that every CGI script is cached under a package whose name is formed from the
Apache::ROOT:: prefix and the relative part of the script’s URL (perl::confer -
ence ::counter_2epl) by replacing all occurrences of / with :: and . with _2e . That’s how
mod_perl knows what script should be fetched from the cache--each script is just a package with a
single subroutine named handler .

If we were to add use diag nos tics to the script we would also see a reference in the error text to
an inner (nested) subroutine--incre ment _counter is actually a nested subroutine.

With mod_perl, each subroutine in every Apache::Registry script is nested inside the handler
subroutine.

It’s important to understand that the inner subroutine effect happens only with code that
Apache::Registry wraps with a declaration of the handler subroutine. If you put your code
into a library or module, which the main script require()’s or use()’s, this effect doesn’t
occur.

2310 May 2001

4.2.1 The First Mysterymod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.

For example if we move the code from the script into the subroutine run, place the subroutines into the
mylib.pl file, save it in the same directory as the script itself and require() it, there will be no
problem at all. (Don’t forget the 1; at the end of the library or the require() might fail.)

 mylib.pl:

 my $counter;
 sub run{
 print "Content-type: text/plain\r\n\r\n";
 $counter = 0;
 for (1..5) {
 increment_counter();
 }
 }
 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }
 1;

 counter.pl:

 use strict;
 require "./mylib.pl";
 run();

This solution provides the easiest and the fastest way to solve the nested subroutines problem, since all
you have to do is to move the code into a separate file, by first wrapping the initial code into some
function that you later will call from the script and keeping the lexically scoped variables that could
cause the problem out of this function.

But as a general rule of thumb, unless the script is very short, I tend to write all the code in external
libraries, and to have only a few lines in the main script. Generally the main script simply calls the
main function of my library. Usually I call it init() or run() . I don’t worry about nested subrou-
tine effects anymore (unless I create them myself :).

The section Remedies for Inner Subroutines in the Perl Reference chapter discusses other possible
workarounds for this problem.

You shouldn’t be intimidated by this issue at all, since Perl is your friend. Just keep the warnings
mode On and Perl will gladly tell you whenever you have this effect, by saying:

 Variable "$counter" will not stay shared at ...[snipped]

Just don’t forget to check your error_log file, before going into production!

By the way, the above example was pretty boring. In my first days of using mod_perl, I wrote a simple
user registration program. I’ll give a very simple representation of this program.

10 May 200124

Stas Bekman4.2.1 The First Mystery

 use CGI;
 $q = CGI->new;
 my $name = $q->param(’name’);
 print_response();

 sub print_response{
 print "Content-type: text/plain\r\n\r\n";
 print "Thank you, $name!";
 }

My boss and I checked the program at the development server and it worked OK. So we decided to
put it in production. Everything was OK, but my boss decided to keep on checking by submitting vari-
ations of his profile. Imagine the surprise when after submitting his name (let’s say ‘‘The Boss’’ :), he
saw the response ‘‘Thank you, Stas Bekman!’’.

What happened is that I tried the production system as well. I was new to mod_perl stuff, and was so
excited with the speed improvement that I didn’t notice the nested subroutine problem. It hit me. At
first I thought that maybe Apache had started to confuse connections, returning responses from other
people’s requests. I was wrong of course.

Why didn’t we notice this when we were trying the software on our development server? Keep
reading and you will understand why.

4.2.2 The Second Mystery

Let’s return to our original example and proceed with the second mystery we noticed. Why did we see
inconsistent results over numerous reloads?

That’s very simple. Every time a server gets a request to process, it hands it over one of the children,
generally in a round robin fashion. So if you have 10 httpd children alive, the first 10 reloads might
seem to be correct because the effect we’ve just talked about starts to appear from the second re-invo-
cation. Subsequent reloads then return unexpected results.

Moreover, requests can appear at random and children don’t always run the same scripts. At any given
moment one of the children could have served the same script more times than any other, and another
may never have run it. That’s why we saw the strange behavior.

Now you see why we didn’t notice the problem with the user registration system in the example. First,
we didn’t look at the error_log . (As a matter of fact we did, but there were so many warnings in
there that we couldn’t tell what were the important ones and what were not). Second, we had too many
server children running to notice the problem.

A workaround is to run the server as a single process. You achieve this by invoking the server with the
-X parameter (httpd -X). Since there are no other servers (children) running, you will see the
problem on the second reload.

But before that, let the error_log help you detect most of the possible errors--most of the warnings
can become errors, so you should make sure to check every warning that is detected by perl, and prob-
ably you should write your code in such a way that no warnings appear in the error_log . If your
error_log file is filled up with hundreds of lines on every script invocation, you will have diffi -
culty noticing and locating real problems--and on a production server you’ll soon run out of disk space
if your site is popular.

2510 May 2001

4.2.2 The Second Mysterymod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.

Of course none of the warnings will be reported if the warning mechanism is not turned On.

4.3 Sometimes it Works, Sometimes it Doesn’t
When you start running your scripts under mod_perl, you might find yourself in a situation where a
script seems to work, but sometimes it screws up. And the more it runs without a restart, the more it
screws up. Often the problem is easily detectable and solvable. You have to test your script under a
server running in single process mode (httpd -X).

Generally the problem is the result of using global variables. Because global variables don’t change
from one script invocation to another unless you change them, you can find your scripts do strange
things.

4.3.1 Regular Expression Memory

Another good example is usage of the /o regular expression modifier, which compiles a regular
expression once, on its first execution, and never compiles it again. This problem can be diffi cult to
detect, as after restarting the server each request you make will be served by a different child process,
and thus the regex pattern for that child will be compiled afresh. Only when you make a request that
happens to be served by a child which has already cached the regex will you see the problem. Gener-
ally you miss that. When you press reload, you see that it works (with a new, fresh child). Eventually
it doesn’t, because you get a child that has already cached the regex and won’t recompile because of
the /o modifier.

An example of such a case would be: my $pat = $q->param(‘‘keyword’’); foreach(@list) {
print if /$pat/o; }

To make sure you don’t miss these bugs always test your CGI in single process mode.

4.4 @INC and mod_perl
When running under mod_perl, once the server is up @INC is frozen and cannot be updated. The only
opportunity to temporarily modify @INC is while the script or the module are loaded and compiled
for the first time. After that its value is reset to the original one. The only way to change @INC perma-
nently is to modify it at Apache startup.

Two ways to alter @INC at server startup:

In the configuration file. For example add:

 PerlSetEnv PERL5LIB /home/httpd/perl

or

 PerlSetEnv PERL5LIB /home/httpd/perl:/home/httpd/mymodules

10 May 200126

Stas Bekman4.3 Sometimes it Works, Sometimes it Doesn’t

Note that this setting will be ignored if you have the Perl Taint Mode mode turned on.

In the startup file directly alter the @INC. For example

 startup.pl

 use lib qw(/home/httpd/perl /home/httpd/mymodules);

and load the startup file from the configuration file by:

 PerlRequire /path/to/startup.pl

4.5 Reloading Modules and Required Files
When you develop plain CGI scripts, you can just change the code, and rerun the CGI from your
browser. Since the script isn’t cached in memory, the next time you call it the server starts up a new
perl process, which recompiles it from scratch. The effects of any modifications you’ve applied are
immediately present.

The situation is different with Apache::Registry , since the whole idea is to get maximum perfor-
mance from the server. By default, the server won’t spend time checking whether any included library
modules have been changed. It assumes that they weren’t, thus saving a few milliseconds to stat()
the source file (multiplied by however many modules/libraries you use() and/or require() in
your script.)

The only check that is done is to see whether your main script has been changed. So if you have only
scripts which do not use() or require() other perl modules or packages, there is nothing to
worry about. If, however, you are developing a script that includes other modules, the files you
use() or require() aren’t checked for modification and you need to do something about that.

So how do we get our modperl-enabled server to recognize changes in library modules? Well, there
are a couple of techniques:

4.5.1 Restarting the server

The simplest approach is to restart the server each time you apply some change to your code.

After restarting the server about 100 times, you will tire of it and you will look for other solutions.

4.5.2 Using Apache::StatINC for the Development Process

Help comes from the Apache::StatINC module. When Perl pulls a file via require(), it
stores the full pathname as a value in the global hash %INC with the file name as the key.
Apache::StatINC looks through %INC and immediately reloads any files that have been updated
on disk.

2710 May 2001

4.5 Reloading Modules and Required Filesmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.

To enable this module just add two lines to httpd.conf .

 PerlModule Apache::StatINC
 PerlInitHandler Apache::StatINC

To be sure it really works, turn on debug mode on your development box by adding PerlSet Var
Stat INCDebug On to your config file. You end up with something like this:

 PerlModule Apache::StatINC
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 PerlInitHandler Apache::StatINC
 PerlSetVar StatINCDebug On
 </Location>

Be aware that only the modules located in @INC are reloaded on change, and you can change @INC
only before the server has been started (in the startup file).

Nothing you do in your scripts and modules which are pulled in with require() after server startup
will have any effect on @INC.

When you write:

 use lib qw(foo/bar);

@INC is changed only for the time the code is being parsed and compiled. When that’s done, @INC is
reset to its original value.

To make sure that you have set @INC correctly, configure /perl-status location (the
Apache::Status module), fetch http://www.example.com/perl-status?inc and look at the bottom
of the page, where the contents of @INC will be shown.

Notice the following trap:

While ‘‘ . ’’ is in @INC, perl knows to require() files with pathnames given relative to the current
(script) directory. After the script has been parsed, the server doesn’t remember the path!

So you can end up with a broken entry in %INC like this:

 $INC{bar.pl} eq "bar.pl"

If you want Apache::StatINC to reload your script--modify @INC at server startup, or use a full path in
the require() call.

10 May 200128

Stas Bekman4.5.2 Using Apache::StatINC for the Development Process

http://www.example.com/perl-status?inc

4.5.3 Using Apache::Reload

Apache::Reload comes as a drop-in replacement for Apache::StatINC . It provides extra
functionality and better flexibility.

If you want Apache::Reload to check all the loaded modules on each request, you just add to
httpd.conf:

 PerlInitHandler Apache::Reload

If you want to reload only specific modules when these get changed, you have a few ways to do that:

Register modules implic itly

Turn Off the Reload All variable, which is On by default

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off

and add:

 use Apache::Reload;

to every module that you want to be reloaded on change.

Register Modules Explicitly

Explicitly specify modules to be reloaded in httpd.conf:

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadModules "My::Foo My::Bar Foo::Bar::Test"

Note that these are split on whitespace, but the module list must be in quotes, otherwise Apache
tries to parse the parameter list.

You can register groups of modules using the metacharacter (*).

 PerlSetVar ReloadModules "Foo::* Bar::*"

In the above example all modules starting with Foo:: and Bar:: will become registered. This
features allows you to assign the whole project modules tree in one pattern.

Using a special "touch" file

You can also set a file that you can touch(1) that causes the reloads to be performed. If you set
this, and don’t touch(1) the file, the reloads don’t happen (no matter how have you registered
the modules to be reloaded).

2910 May 2001

4.5.3 Using Apache::Reloadmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.

 PerlSetVar ReloadTouchFile /tmp/reload_modules

Now when you’re happy with your changes, simply go to the command line and type:

 % touch /tmp/reload_modules

This feature is very convenient in a production server environment, but compared to a full restart,
the benefits of preloaded modules memory sharing are lost, since each child will get it’s own
copy of the reloaded modules.

4.5.3.1 Caveats

This module might have a problem with reloading single modules that contain multiple packages that
all use pseudo-hashes.

4.6 __END__ and __DATA__ tokens
Apache::Registry scripts cannot contain __END__ or __DATA__ tokens.

Why? Because Apache::Registry scripts are being wrapped into a subroutine called handler ,
like the script at URI /perl/test.pl :

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";

When the script is being executed under Apache::Registry handler, it actually becomes:

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 }

So if you happen to put an __END__ tag, like:

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed

it will be turned into:

10 May 200130

Stas Bekman4.6 __END__ and __DATA__ tokens

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed
 }

and you try to execute this script, you will receive the following warning:

 Missing right bracket at line 4, at end of line

Perl cuts everything after the __END__ tag. The same applies to the __DATA__ tag.

Also, rememeber that whatever applies to Apache::Registry scripts, in most cases applies to
Apache::PerlRun scripts.

4.7 Output from system calls
The output of system() , exec() , and open(PIPE,"|program") calls will not be sent to the
browser unless your Perl was configured with sfio .

You can use backticks as a possible workaround:

 print ‘command here‘;

But you’re throwing performance out the window either way. It’s best not to fork at all if you can
avoid it.

4.8 Terminating requests and processes
Perl’s exit() built-in function cannot be used in mod_perl scripts. Calling it causes the mod_perl
process to exit (which defeats the purpose of using mod_perl). The Apache::exit() function
should be used instead.

You might start your scripts by overriding the exit() subroutine (if you use Apache::exit()
directly, you will have a problem testing the script from the shell, unless you put use Apache ();
into your code.) I use the following code:

 BEGIN {
 # Auto-detect if we are running under mod_perl or CGI.
 $USE_MOD_PERL = $ENV{MOD_PERL} ? 1 : 0;
 }
 use subs qw(exit);

 # Select the correct exit function
 ########
 sub exit{
 $USE_MOD_PERL ? Apache::exit(0) : CORE::exit(0);
 }

3110 May 2001

4.7 Output from system callsmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.

Now the correct exit() will always be chosen, whether you run the script under mod_perl, ordinary
CGI or from the shell.

Note that if you run the script under Apache::Registry , The Apache function exit() over-
rides the Perl core built-in function. While you see exit() listed in the @EXPORT_OK list of the
Apache package, Apache::Registry does something you don’t see and imports this function for
you. This means that if your script is running under the Apache::Registry handler you don’t
have to worry about exit(). The same applies to Apache::PerlRun .

If you use CORE::exit() in scripts running under mod_perl, the child will exit, but neither a
proper exit nor logging will happen on the way. CORE::exit() cuts off the server’s legs.

Note that Apache::exit(Apache::Constants::DONE) will cause the server to exit grace-
fully , completing the logging functions and protocol requirements etc. (Apache::Constants::DONE ==
-2, Apache::Constants::OK == 0.)

If you need to shut down the child cleanly after the request was completed, use the
$r->child_termi nate method. You can call it anywhere in the code, and not just at the ‘‘end’’.
This sets the value of the MaxRequestsPer Child configuration variable to 1 and clears the
keepalive flag. After the request is serviced, the current connection is broken, because of the
keepalive flag, and the parent tells the child to cleanly quit, because MaxRequestsPer Child
is smaller than the number of requests served.

In an Apache::Registry script you would do:

 Apache->request->child_terminate;

or in httpd.conf:

 PerlFixupHandler "sub { shift->child_terminate }"

You would want to use the latter example only if you wanted the child to terminate every time the
registered handler is called. Probably this is not what you want.

Even if you don’t need to call child_termi nate () at the end of the request if you want the
process to quit afterwards, here is an example of assigning the postprocessing handler. You might do
this if you wanted to execute your own code a moment before the process quits.

 my $r = shift;
 $r->post_connection(\&exit_child);
 sub exit_child{
 # some logic here if needed
 $r->child_terminate;
 }

The above is the code that is used by the Apache::Size Limit module which terminates processes
that grow bigger than a value you choose.

Apache::GTopLimit (based on libgtop and GTop.pm) is a similar module. It does the same
thing, plus you can configure it to terminate processes when their shared memory shrinks below some
specified size.

10 May 200132

Stas Bekman4.8 Terminating requests and processes

4.9 die() and mod_perl
When you write:

 open FILE, "foo" or die "Cannot open foo file for reading: $!";

in a perl script and execute it--the script would die() if it is unable to open the file, by aborting the
script execution, printing the death reason and quitting the Perl interpreter.

You will hardly find a properly written Perl script that doesn’t have at least one die() statement in
it, if it has to cope with system calls and the like.

A CGI script running under mod_cgi exits on its completion. The Perl interperter exits as well. So it
doesn’t really matter whether the interpreter quits because the script died by natural death (when the
last statement was executed) or was aborted by a die() statement.

In mod_perl we don’t want the interpreter to quit. We already know that when the script completes its
chores the interpeter won’t quit. There is no reason why it should quit when the script has stopped
because of die(). As a result calling die() won’t quit the process.

And this is how it works--when the die() gets triggered, it’s mod_perl’s $SIG{__DIE__} handler
that logs the error message and calls Apache::exit() instead of CORE::die(). Thus the script stops, but
the process doesn’t quit.

Here is an example of such trapping code, although it isn’t the real code:

 $SIG{__DIE__} = sub { print STDERR @_; Apache::exit(); }

4.10 Global Vari ables Persistance
Since the child process generally doesn’t exit before it has serviced several requests, global variables
persist inside the same process from request to request. This means that you must never rely on the
value of the global variable if it wasn’t initialized at the beginning of the request processing.

You should avoid using global variables unless it’s impossible without them, because it will make
code development harder and you will have to make certain that all the variables are initialized before
they are used. Use my() scoped variables wherever you can.

You should be especially careful with Perl special variables which cannot be lexically scoped. You
have to use local() instead.

4.11 Command line Switches (-w, -T, etc)
Normally when you run perl from the command line, you have the shell invoke it with
#!/bin/perl (sometimes referred to as the shebang line). In scripts running under mod_cgi, you
may use perl execution switch arguments as described in the perlrun manpage, such as -w , -T or
-d . Since scripts running under mod_perl don’t need the shebang line, all switches except -w are
ignored by mod_perl. This feature was added for a backward compatibility with CGI scripts.

3310 May 2001

4.9 die() and mod_perlmod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.

Most command line switches have a special variable equivalent which allows them to be set/unset in
code. Consult the perlvar manpage for more details.

4.11.1 Warnings

There are three ways to enable warnings:

Locally to a block

This code turns warnings mode On for the scope of the block.

 {
 local $^W = 1;
 # some code
 }
 # $^W assumes its previous value here

This turns it Off :

 {
 local $^W = 0;
 # some code
 }
 # $^W assumes its previous value here

Note, that if you forget the local operator this code will affect the child processing the current
request, and all the subsequent requests processed by that child. Thus

 $^W = 0;

will turn the warnings Off, no matter what.

If you want to turn warnings On for the scope of the whole file, as in the previous item, you can
do this by adding:

 local $^W = 1;

at the beginning of the file. Since a file is effectively a block, file scope behaves like a block’s
curly braces { } and local $^W at the start of the file will be effective for the whole file.

Globally to all Processes

Setting:

 PerlWarn On

in httpd.conf will turn warnings On in any script.

10 May 200134

Stas Bekman4.11.1 Warnings

You can then fine tune your code, turning warnings Off and On by setting the $^W variable in
your scripts.

Locally to a script

 #!/usr/bin/perl -w

will turn warnings On for the scope of the script. You can turn them Off and On in the script by
setting the $^W variable as noted above.

While having warning mode turned On is essential for a development server, you should turn it glob-
ally Off in a production server, since, for example, if every served request generates only one warning,
and your server serves millions of requests per day, your log file will eat up all of your disk space and
your system will die.

4.11.2 Taint Mode

Perl’s -T switch enables Taint mode. If you aren’t forcing all your scripts to run under Taint mode
you are looking for trouble from malicious users. (See the perlsec manpage for more information)

If you have some scripts that won’t run under Taint mode, run only the ones that run under mod_perl
with Taint mode enabled and the rest on another server with Taint mode disabled -- this can be either a
mod_cgi in the front-end server or another back-end mod_perl server. You can use the mod_rewrite
module and redirect requests based on the file extensions. For example you can use .tcgi for the
taint-clean scripts, and cgi for the rest.

When you have this setup you can start working toward cleaning the rest of the scripts, to make them
run under the Taint mode. Just because you have a few dirty scripts doesn’t mean that you should
jeopardize your whole service.

Since the -T switch doesn’t have an equivalent perl variable, mod_perl provides the Perl -
TaintCheck directive to turn on taint checks. In httpd.conf , enable this mode with:

 PerlTaintCheck On

Now any code compiled inside httpd will be taint checked.

If you use the -T switch, Perl will warn you that you should use the Perl TaintCheck configura-
tion directive and will otherwise ignore it.

4.11.3 Other switches

Finally, if you still need to to set additional perl startup flags such as -d and -D , you can use an envi-
ronment variable PERL5OPT. Switches in this variable are treated as if they were on every Perl
command line.

Only the -[DIMUdmw] switches are allowed.

3510 May 2001

4.11.2 Taint Modemod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.

When the Perl TaintCheck variable is turned on, the value of PERL5OPT will be ignored.

;o)

10 May 200136

Stas Bekman4.11.3 Other switches

5 RDBMS and mod_perl

3710 May 2001

5 RDBMS and mod_perlmod_perl Tutorial: RDBMS and mod_perl

5.1 Apache::DBI - Initi ate a persistent database connec-
tion
When people started to use the web, they found that they needed to write web interfaces to their
databases. CGI is the most widely used technology for building such interfaces. The main limi tation of
a CGI script driving a database is that its database connection is not persistent - on every request the
CGI script has to re-connect to the database, and when the request is completed the connection is
closed.

Apache::DBI was written to remove this limi tation. When you use it, you have a database connec-
tion which persists for the process’ entire life. So when your mod_perl script needs to use a database,
Apache::DBI provides a valid connection immediately and your script starts work right away
without having to initiate a database connection first.

This is possible only with CGI running under a mod_perl enabled server, since in this model the child
process does not quit when the request has been served.

It’s almost as straightforward as is it sounds; there are just a few things to know about and we will
cover them in this section.

5.1.1 Introduction

The DBI module can make use of the Apache::DBI module. When it loads, the DBI module tests if
the environment variable $ENV{MOD_PERL} is set, and if the Apache::DBI module has already
been loaded. If so, the DBI module will forward every connect() request to the Apache::DBI
module. Apache::DBI uses the ping() method to look for a database handle from a previous
connect() request, and tests if this handle is still valid. If these two conditions are fulfilled it just
returns the database handle.

If there is no appropriate database handle or if the ping() method fails, Apache::DBI establishes
a new connection and stores the handle for later re-use. When the script is run again by a child that is
still connected, Apache::DBI just checks the cache of open connections by matching the host, user-
name and password parameters against it. A matching connection is returned if available or a new one
is initiated and then returned.

There is no need to delete the discon nect () statements from your code. They won’t do anything
because the Apache::DBI module overloads the discon nect () method with an empty one.

When should this module be used and when shouldn’t it be used?

You will want to use this module if you are opening several database connections to the server.
Apache::DBI will make them persistent per child, so if you have ten children and each opens two
different connections (with different connect() arguments) you will have in total twenty opened
and persistent connections. After the initial connect() you will save the connection time for every
connect() request from your DBI module. This can be a huge benefit for a server with a high
volume of database traffic.

You must not use this module if you are opening a special connection for each of your users. Each
connection will stay persistent and in a short time the number of connections will be so big that your
machine will scream in agony and die.

10 May 200138

Stas Bekman5.1 Apache::DBI - Initiate a persistent database connection

If you want to use Apache::DBI but you have both situations on one machine, at the time of writing
the only solution is to run two Apache/mod_perl servers, one which uses Apache::DBI and one
which does not.

5.1.2 Configuration

After installing this module, the configuration is simple - add the following directive to httpd.conf

 PerlModule Apache::DBI

Note that it is important to load this module before any other Apache*DBI module and before the
DBI module itself!

You can skip preloading DBI , since Apache::DBI does that. But there is no harm in leaving it in, as
long as it is loaded after Apache::DBI .

5.1.3 Preopening DBI connections

If you want to make sure that a connection will already be opened when your script is first executed
after a server restart, then you should use the connect_on_init() method in the startup file to
preload every connection you are going to use. For example:

 Apache::DBI->connect_on_init
 ("DBI:mysql:myDB::myserver",
 "username",
 "passwd",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

As noted above, use this method only if you want all of apache to be able to connect to the database
server as one user (or as a very few users), i.e. if your user(s) can effectively share the connection.
Do not use this method if you want for example one unique connection per user.

Be warned though, that if you call connect_on_init() and your database is down, Apache chil-
dren will be delayed at server startup, trying to connect. They won’t begin serving requests until either
they are connected, or the connection attempt fails. Depending on your DBD driver, this can take
several minutes!

5.1.4 Debugging Apache::DBI

If you are not sure if this module is working as advertised, you should enable Debug mode in the
startup script by:

 $Apache::DBI::DEBUG = 1;

3910 May 2001

5.1.2 Configurationmod_perl Tutorial: RDBMS and mod_perl

Starting with ApacheDBI-0.84 , setting $Apache::DBI::DEBUG = 1 will produce only
minimal output. For a full trace you should set $Apache::DBI::DEBUG = 2.

After setting the DEBUG level you will see entries in the error_log both when Apache::DBI
initializes a connection and when it returns one from its cache. Use the following command to view
the log in real time (your error_log might be located at a different path, it is set in the Apache
configuration files):

 tail -f /usr/local/apache/logs/error_log

I use alias (in tcsh) so I do not have to remember the path:

 alias err "tail -f /usr/local/apache/logs/error_log"

5.1.5 Opening connections with different parameters

When it receives a connection request, before it decides to use an existing cached connection,
Apache::DBI insists that the new connection be opened in exactly the same way as the cached
connection. If I have one script that sets LongReadLen and one that does not, Apache::DBI will
make two different connections. So instead of having a maximum of 40 open connections, I can end
up with 80.

However, you are free to modify the handle immediately after you get it from the cache. So always
initiate connections using the same parameters and set LongReadLen (or whatever) afterwards.

5.1.6 Caching prepare() Statements

You can also benefit from persistent connections by replacing prepare() with
prepare_cached(). That way you will always be sure that you have a good statement handle and
you will get some caching benefit. The downside is that you are going to pay for DBI to parse your
SQL and do a cache lookup every time you call prepare_cached().

Be warned that some databases (e.g PostgreSQL and Sybase) don’t support caches of prepared plans.
With Sybase you could open multiple connections to achieve the same result, although this is at the
risk of getting deadlocks depending on what you are trying to do!

;o)

10 May 200140

Stas Bekman5.1.5 Opening connections with different parameters

6 Performance Tuning

4110 May 2001

6 Performance Tuningmod_perl Tutorial: Performance Tuning

6.1 What we will learn in this chapter
The Big Picture

Essential Tools

Choosing MaxClients

KeepAlive

Limit ing the Size of the Processes

Sharing Memory

How Shared My Memory Is

Preload Perl modules at server startup

Preload Registry Scripts

Modules Initialization

Keeping the Shared Memory Limit

Limit ing the Resources Used by httpd Children

Upload/Download of Big Files

Global vs Fully Qualified Variables

Forking or Executing subprocesses from mod_perl

Sending plain HTML as a compressed output

6.2 The Big Picture
To make the user’s Web browsing experience as painless as possible, every effort must be made to
wring the last drop of performance from the server. There are many factors which affect Web site
usability, but speed is one of the most important. This applies to any webserver, not just Apache, and
it is very important for you to understand it.

How do we measure the speed of a server? Since the user (and not the computer) is the one that inter-
acts with the Web site, one good speed measurement is the time elapsed between the moment when
she clicks on a link or presses a Submit button to the moment when the resulting page is rendered
complete.

The requests and replies are broken into packets. A request may be made up of several packets, a reply
may be many thousands. Each packet has to make its own way from one machine to another, perhaps
passing through many interconnection nodes. We must measure the time starting from when the first
packet of the request leaves our user’s machine to when the last packet of the reply arrives back there.

10 May 200142

Stas Bekman6.1 What we will learn in this chapter

A webserver is only one of the elements the packets see along their way. If we follow them from
browser to server and back again, they may travel by different routes through many different entities.
Before they are processed by your server the packets might have to go through proxy (accelerator)
servers and if the request contains more than one packet they will all have to wait for the last one so
that the full request message can be reassembled at the server. Then the whole process is repeated in
reverse.

You could work hard to fine tune your webserver’s performance, but a slow Network Interface Card
(NIC) or a slow network connection from your server might defeat it all. That’s why it’s important to
think about the Big Picture and to be aware of possible bottlenecks between the server and the Web.
Of course there is little that you can do if the user has a slow connection.

You might tune your scripts and webserver to process incoming requests ultra fast, so you will need
only a small number of working servers, but you might find that the server processes are all busy
waiting for slow clients to accept their responses. You will see more examples in this chapter.

A Web service is like a car, if one of the parts or mechanisms is broken the car may not go smoothly
and it can even stop dead if pushed too far without first fixing it.

6.3 Essential Tools
In order to improve performance we need measurement tools. We use benchmarking for this purpose.
We can benchmark the code and we can benchmark the response time which in addition to the code
execution measures the request arrival and response delivery time amongst other things.

6.3.1 Benchmarking Perl Code

If you are going to write your own benchmarking utility, use the Bench mark module and the
Time::HiRes module where you need better time precision (<10msec).

An example of the Bench mark .pm module usage:

 benchmark.pl

 use Benchmark;

 timethis (1_000,
 sub {
 my $x = 100;
 my $y = log ($x ** 100) for (0..10000);
 });

 % perl benchmark.pl
 timethis 1000: 25 wallclock secs (24.93 usr + 0.00 sys = 24.93 CPU)

An example of the Time::HiRes module usage:

4310 May 2001

6.3 Essential Toolsmod_perl Tutorial: Performance Tuning

 hi-res.pl

 use Time::HiRes qw(gettimeofday tv_interval);
 sub sub_that_takes_a_teeny_bit_of_time{1+1;};
 my $start_time = [gettimeofday];
 &sub_that_takes_a_teeny_bit_of_time();
 my $end_time = [gettimeofday];
 my $elapsed = tv_interval($start_time,$end_time);
 print "The sub took $elapsed seconds.\n"

 % perl hi-res.pl
 The sub took 0.000262 seconds.

6.3.2 Benchmarking Response Times

To measure response times all we need is a client that will generate parallel requests, process the
responses and print the results of the test. You can use either an existing tool that performs this task or
you can develop your own.

6.3.2.1 ApacheBench

From existing tools you can try ApacheBench (ab) that comes bundled with Apache source distribu-
tion. It is designed to give you an idea of the performance that your current Apache installation can
give. In particular, it shows you how many requests per second your Apache server is capable of
serving.

Let’s try it. We will simulate 10 users concurrently requesting a very light script at
www.example.com:81/test/test.pl . Each simulated user makes 10 requests.

 % ./ab -n 100 -c 10 www.example.com:81/test/test.pl

The results are:

 Document Path: /perl/test.pl
 Document Length: 319 bytes

 Concurrency Level: 10
 Time taken for tests: 0.715 seconds
 Complete requests: 100
 Failed requests: 0
 Total transferred: 60700 bytes
 HTML transferred: 31900 bytes
 Requests per second: 139.86
 Transfer rate: 84.90 kb/s received

 Connection Times (ms)
 min avg max
 Connect: 0 0 3
 Processing: 13 67 71
 Total: 13 67 74

10 May 200144

Stas Bekman6.3.2 Benchmarking Response Times

6.3.2.2 httperf

httperf is a utility written by David Mosberger. Just like ApacheBench, it measures the performance of
the webserver.

A sample command line is shown below:

 % httperf --server hostname --port 80 --uri /test.html \
 --rate 150 --num-conn 27000 --num-call 1 --timeout 5

This command causes httperf to use the web server on the host with IP name hostname, running at
port 80. The web page being retrieved is /test.html and, in this simple test, the same page is retrieved
repeatedly. The rate at which requests are issued is 150 per second. The test involves initiating a total
of 27,000 TCP connections and on each connection one HTTP call is performed. A call consists of
sending a request and receiving a reply.

The timeout option defines the number of seconds that the client is willing to wait to hear back from
the server. If this timeout expires, the tool considers the corresponding call to have failed. Note that
with a total of 27,000 connections and a rate of 150 per second, the total test duration will be approxi-
mately 180 seconds (27,000/150), independent of what load the server can actually sustain. Here is a
result that one might get:

 Total: connections 27000 requests 26701 replies 26701 test-duration 179.996 s

 Connection rate: 150.0 conn/s (6.7 ms/conn, <=47 concurrent connections)
 Connection time [ms]: min 1.1 avg 5.0 max 315.0 median 2.5 stddev 13.0
 Connection time [ms]: connect 0.3

 Request rate: 148.3 req/s (6.7 ms/req)
 Request size [B]: 72.0

 Reply rate [replies/s]: min 139.8 avg 148.3 max 150.3 stddev 2.7 (36 samples)
 Reply time [ms]: response 4.6 transfer 0.0
 Reply size [B]: header 222.0 content 1024.0 footer 0.0 (total 1246.0)
 Reply status: 1xx=0 2xx=26701 3xx=0 4xx=0 5xx=0

 CPU time [s]: user 55.31 system 124.41 (user 30.7% system 69.1% total 99.8%)
 Net I/O: 190.9 KB/s (1.6*10^6 bps)

 Errors: total 299 client-timo 299 socket-timo 0 connrefused 0 connreset 0
 Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

6.3.3 Using LWP::Parallel::UserAgent

You can use LWP::Paral lel ::User Agent to write your own bechmarking utility.

This is another crashme suite originally written by Michael Schilli (and used to be located at
http://www.linux-magazin.de/ausgabe.1998.08/Pounder/pounder.html, but it’s has gone). I made a few
modifications, mostly adding my() operators. I also allowed it to accept more than one url to test,
since sometimes you want to test more than one script.

The tool provides the same results as ab above but it also allows you to set the timeout value, so
requests will fail if not served within the time out period. You also get values for Latency (seconds
per request) and Throughput (requests per second). It can do a complete simulation of your favorite

4510 May 2001

6.3.3 Using LWP::Parallel::UserAgentmod_perl Tutorial: Performance Tuning

http://www.linux-magazin.de/ausgabe.1998.08/Pounder/pounder.html

Netscape browser :) and give you a better picture.

I have noticed while running these two benchmarking suites, that ab gave me results from two and a
half to three times better. Both suites were run on the same machine, with the same load and the same
parameters, but the implementations were different.

Sample output:

 URL(s): http://www.example.com:81/perl/access/access.cgi
 Total Requests: 100
 Parallel Agents: 10
 Succeeded: 100 (100.00%)
 Errors: NONE
 Total Time: 9.39 secs
 Throughput: 10.65 Requests/sec
 Latency: 0.85 secs/Request

And the code:

10 May 200146

Stas Bekman6.3.3 Using LWP::Parallel::UserAgent

http://www.example.com:81/perl/access/access.cgi

 #!/usr/apps/bin/perl -w

 use LWP::Parallel::UserAgent;
 use Time::HiRes qw(gettimeofday tv_interval);
 use strict;

 ###
 # Configuration
 ###

 my $nof_parallel_connections = 10;
 my $nof_requests_total = 100;
 my $timeout = 10;
 my @urls = (
 ’ http://www.example.com:81/perl/faq_manager/faq_manager.pl ’,
 ’ http://www.example.com:81/perl/access/access.cgi ’,
);

 ##
 # Derived Class for latency timing
 ##

 package MyParallelAgent;
 @MyParallelAgent::ISA = qw(LWP::Parallel::UserAgent);
 use strict;

 ###
 # Is called when connection is opened
 ###
 sub on_connect {
 my ($self, $request, $response, $entry) = @_;
 $self->{__start_times}->{$entry} = [Time::HiRes::gettimeofday];
 }

 ###
 # Are called when connection is closed
 ###
 sub on_return {
 my ($self, $request, $response, $entry) = @_;
 my $start = $self->{__start_times}->{$entry};
 $self->{__latency_total} += Time::HiRes::tv_interval($start);
 }

 sub on_failure {
 on_return(@_); # Same procedure
 }

 ###
 # Access function for new instance var
 ###
 sub get_latency_total {
 return shift->{__latency_total};
 }

4710 May 2001

6.3.3 Using LWP::Parallel::UserAgentmod_perl Tutorial: Performance Tuning

http://www.example.com:81/perl/faq_manager/faq_manager.pl

http://www.example.com:81/perl/access/access.cgi

 ##
 package main;
 ##
 ###
 # Init parallel user agent
 ###
 my $ua = MyParallelAgent->new();
 $ua->agent("pounder/1.0");
 $ua->max_req($nof_parallel_connections);
 $ua->redirect(0); # No redirects

 ###
 # Register all requests
 ###
 foreach (1..$nof_requests_total) {
 foreach my $url (@urls) {
 my $request = HTTP::Request->new(’GET’, $url);
 $ua->register($request);
 }
 }

 ###
 # Launch processes and check time
 ###
 my $start_time = [gettimeofday];
 my $results = $ua->wait($timeout);
 my $total_time = tv_interval($start_time);

 ###
 # Requests all done, check results
 ###

 my $succeeded = 0;
 my %errors = ();

 foreach my $entry (values %$results) {
 my $response = $entry->response();
 if($response->is_success()) {
 $succeeded++; # Another satisfied customer
 } else {
 # Error, save the message
 $response->message("TIMEOUT") unless $response->code();
 $errors{$response->message}++;
 }
 }

10 May 200148

Stas Bekman6.3.3 Using LWP::Parallel::UserAgent

 ###
 # Format errors if any from %errors
 ###
 my $errors = join(’,’, map "$_ ($errors{$_})", keys %errors);
 $errors = "NONE" unless $errors;

 ###
 # Format results
 ###

 #@urls = map {($_,".")} @urls;
 my @P = (
 "URL(s)" => join("\n\t\t ", @urls),
 "Total Requests" => "$nof_requests_total",
 "Parallel Agents" => $nof_parallel_connections,
 "Succeeded" => sprintf("$succeeded (%.2f%%)\n",
 $succeeded * 100 / $nof_requests_total),
 "Errors" => $errors,
 "Total Time" => sprintf("%.2f secs\n", $total_time),
 "Throughput" => sprintf("%.2f Requests/sec\n",
 $nof_requests_total / $total_time),
 "Latency" => sprintf("%.2f secs/Request",
 ($ua->get_latency_total() || 0) /
 $nof_requests_total),
);

 my ($left, $right);
 ###
 # Print out statistics
 ###
 format STDOUT =
 @<<<<<<<<<<<<<<< @*
 "$left:", $right
 .

 while(($left, $right) = splice(@P, 0, 2)) {
 write;
 }

6.4 Choosing MaxClients
The MaxClients directive sets the limit on the number of simultaneous requests that can be
supported. No more than this number of child server processes will be created. To configure more than
256 clients, you must edit the HARD_SERVER_LIMIT entry in httpd.h and recompile. In our case
we want this variable to be as small as possible, because in this way we can limit the resources used
by the server children. Since we can restrict each child’s process size, the calculation of
MaxClients is pretty straightforward:

 Total RAM Dedicated to the Webserver
 MaxClients = ------------------------------------
 MAX child’s process size

So if I have 400Mb left for the webserver to run with, I can set MaxClients to be of 40 if I know
that each child is limited to 10Mb of memory (e.g. with Apache::Size Limit).

4910 May 2001

6.4 Choosing MaxClientsmod_perl Tutorial: Performance Tuning

You will be wondering what will happen to your server if there are more concurrent users than
MaxClients at any time. This situation is accompanied by the following warning message in the
error_log :

 [Sun Jan 24 12:05:32 1999] [error] server reached MaxClients setting,
 consider raising the MaxClients setting

There is no problem -- any connection attempts over the MaxClients limit will normally be queued,
up to a number based on the Listen Back log directive. When a child process is freed at the end of
a different request, the connection will be served.

It is an error because clients are being put in the queue rather than getting served immediately,
despite the fact that they do not get an error response. The error can be allowed to persist to balance
available system resources and response time, but sooner or later you will need to get more RAM so
you can start more child processes. The best approach is to try not to have this condition reached at all,
and if you reach it often you should start to worry about it.

It’s important to understand how much real memory a child occupies. Your children can share
memory between them when the OS supports that. You must take action to allow the sharing to
happen. If you do this, the chances are that your MaxClients can be even higher. But it seems that
it’s not so simple to calculate the absolute number. If you come up with solution please let us know! If
the shared memory was of the same size throughout the child’s life, we could derive a much better
formula:

 Total_RAM + Shared_RAM_per_Child * (MaxClients - 1)
 MaxClients = ---
 Max_Process_Size

which is:

 Total_RAM - Shared_RAM_per_Child
 MaxClients = ---------------------------------------
 Max_Process_Size - Shared_RAM_per_Child

Let’s roll some calculations:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 4Mb

 500 - 4
 MaxClients = --------- = 82
 10 - 4

With no sharing in place

 500
 MaxClients = --------- = 50
 10

10 May 200150

Stas Bekman6.4 Choosing MaxClients

With sharing in place you can have 64% more servers without buying more RAM.

If you improve sharing and keep the sharing level, let’s say:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 8Mb

 500 - 8
 MaxClients = --------- = 246
 10 - 8

392% more servers! Now you can feel the importance of having as much shared memory as possible.

6.5 KeepAlive
If your mod_perl server’s httpd.conf includes the following directives:

 KeepAlive On
 MaxKeepAliveRequests 100
 KeepAliveTimeout 15

you have a real performance penalty, since after completing each request processing, the process will
wait for KeepAlive Time out seconds before closing the connection and thus not serving other
requests at this time. With this configuration you will need many more concurrent processes on a
server with high traffic.

If you use some server status reporting tools, you will see the process in K status when it’s in
KeepAlive status.

The chances are that you don’t want this feature enabled. Set it Off with:

 KeepAlive Off

the other two directives don’t matter if KeepAlive is Off .

You might want to consider enabling this option if the client’s browser needs to request more than one
object from your server for a single HTML page. If this is the situation then by setting KeepAlive
Off for each page you save the HTTP connection overhead for all requests but the first one.

For example if you have a page with 10 ad banners, which is not uncommon today, you server will
work more effectively if a single process serves them all during a single connection. However, your
client will see a slightly slower response, since banners will be brought one at a time and not concur-
rently as is the case if each IMG tag opens a separate connection.

Since keepalive connections will not incur the additional three-way TCP handshake, turning it off will
be kinder to the network.

5110 May 2001

6.5 KeepAlivemod_perl Tutorial: Performance Tuning

SSL connections benefit the most from KeepAlive in case you didn’t configure the server to cache
session ids.

You have probably followed the advice to send all the requests for static objects to a plain Apache
server. Since most pages include more than one unique static image, you should keep the default
KeepAlive setting of the non-mod_perl server, i.e. keep it On. It will probably be a good idea also
to reduce the timeout a little.

One option would be for the proxy/accelerator to keep the connection open to the client but make indi-
vidual connections to the server, read the response, buffer it for sending to the client and close the
server connection. Obviously you would make new connections to the server as required by the
client’s requests.

Also you should know that KeepAlive requests only work with responses that contain a
Content-Length header. To send this header do:

 $r->header_out(’Content-Length’, $length);

6.6 Be carefull with symbolic links
As you know Apache::Registry caches the scripts based on their URI. If you have the same
script that can be reached by different URIs, which is possible if you have used symbolic links, you
will get the same script cached twice!

For example:

 % ln -s /home/httpd/perl/news/news.pl /home/httpd/perl/news.pl

Now the script can be reached through the both URIs /news/news.pl and /news.pl . It doesn’t
really matter until you advertise the two URIs, and users reach the same script from both of them.

To detect this, use the /perl-status (Apache::Status) handler to see all the compiled scripts
and their packages. In our example, when requesting: http://localhost/perl-status?rgysubs you would
see:

 Apache::ROOT::perl::news::news_2epl
 Apache::ROOT::perl::news_2epl

after the both URIs have been requested from the same child process that happened to serve your
request. To make the debugging easier see run the server in single mode.

6.7 Limit ing the Size of the Processes
Apache::Size Limit allows you to kill off Apache httpd processes if they grow too large.

Configuration:

10 May 200152

Stas Bekman6.6 Be carefull with symbolic links

http://localhost/perl-status?rgysubs

In your startup.pl:

 use Apache::SizeLimit;
 $Apache::SizeLimit::MAX_PROCESS_SIZE = 10000;
 # in KB, so this is 10MB

In your httpd.conf:

 PerlFixupHandler Apache::SizeLimit

See perldoc Apache::Size Limit for more details.

By using this module, you should be able to avoid using the Apache configuration directive MaxRe-
questsPer Child , although for some folks, using both in combination does the job.

6.8 Sharing Memory
A very important point is the sharing of memory. If your OS supports this (and most sane systems do),
you might save more memory by sharing it between child processes. This is only possible when you
preload code at server startup. However during a child process’ life, its memory pages becomes
unshared and there is no way we can control perl to make it allocate memory so (dynamic) variables
land on different memory pages than constants, that’s why the copy-on-write effect (will explain in a
moment) will hit almost at random. If you are pre-loading many modules you might be able to balance
the memory that stays shared against the time for an occasional fork by tuning the MaxRe-
questsPer Child to a point where you restart before too much becomes unshared. In this case the
MaxRequestsPer Child is very specific to your scenario. You should do some measurements and
you might see if this really makes a difference and what a reasonable number might be. Each time a
child reaches this upper limit and restarts it should release the unshared copies and the new child will
inherit pages that are shared until it scribbles on them.

It is very important to understand that your goal is not to have MaxRequestsPer Child to be
10000. Having a child serving 300 requests on precompiled code is already a huge speedup, so if it is
100 or 10000 it does not really matter if it saves you the RAM by sharing. Do not forget that if you
preload most of your code at the server startup, the fork to spawn a new child will be very very fast,
because it inherits most of the preloaded code and the perl interpreter from the parent process. But
than, during the work of the child, its memory pages (which aren’t really its yet, it uses the parent’s
pages) are getting dirty (originally inherited and shared variables are getting updated/modified) and
the copy-on-write happens, which reduces the number of shared memory pages - thus enlarging the
memory demands. Killing the child and respawning a new one, allows to get the pristine shared
memory from the parent process again.

The conclusion is that MaxRequestsPer Child should not be too big, otherwise you loose the
benefits of the memory sharing.

6.9 How Shared My Memory Is
You’ve probably noticed that the word shared is being repeated many times in many things related to
mod_perl. Indeed, shared memory might save you a lot of money, since with sharing in place you can
run many more servers than without it.

5310 May 2001

6.8 Sharing Memorymod_perl Tutorial: Performance Tuning

How much shared memory do you have? You can see it by either using the memory utils that comes
with your system or you can deploy GTop module:

 print "Shared memory of the current process: ",
 GTop->new->proc_mem($$)->share,"\n";

 print "Total shared memory: ",
 GTop->new->mem->share,"\n";

When you watch the output of the top utility, don’t confuse RSS (or RES) column with SHARE
column -- RES is a RESident memory, which is a size of pages currently swapped in.

6.10 Keeping the Shared Memory Limit
Apache::GTopLimit module allows you to kill off Apache httpd processes if they grow too large
(just like Apache::Size Limit) or have too little of shared memory.

Configuration:

In your startup.pl:

 use Apache::GTopLimit;

 # Control the life based on memory size
 # in KB, so this is 10MB
 $Apache::GTopLimit::MAX_PROCESS_SIZE = 10000;

 # Control the life based on Shared memory size
 # in KB, so this is 4MB
 $Apache::GTopLimit::MIN_PROCESS_SHARED_SIZE = 4000;

 # watch what happens
 $Apache::GTopLimit::DEBUG = 1;

In your httpd.conf:

 PerlFixupHandler Apache::GTopLimit

6.11 Preload Perl modules at server startup
Use the Perl Require and PerlMod ule directives to load commonly used modules such as
CGI.pm , DBI and etc., when the server is started. On most systems, server children will be able to
share the code space used by these modules. Just add the following directives into httpd.conf :

 PerlModule CGI;
 PerlModule DBI;

10 May 200154

Stas Bekman6.10 Keeping the Shared Memory Limit

But even a better approach is to create a separate startup file (where you code in plain perl) and put
there things like:

 use DBI;
 use Carp;

Then you require() this startup file with help of Perl Require directive from httpd.conf ,
by placing it before the rest of the mod_perl configuration directives:

 PerlRequire /path/to/start-up.pl

CGI.pm is a special case. Ordinarily CGI.pm autoloads most of its functions on an as-needed basis.
This speeds up the loading time by deferring the compilation phase. However, if you are using
mod_perl, FastCGI or another system that uses a persistent Perl interpreter, you will want to precom-
pile the methods at initialization time. To accomplish this, call the package function compile() like
this:

 use CGI ();
 CGI->compile(’:all’);

The arguments to compile() are a list of method names or sets, and are identical to those accepted
by the use() and import() operators. Note that in most cases you will want to replace ’:all’
with tag names you really use in your code, since generally only a subset of subs is actually being
used.

6.11.0.0.1 Modules Initial ization

The first example is the DBI module. As you know DBI works with many database drivers falling
into the DBD:: category, e.g. DBD::mysql . It’s not enough to preload DBI , you should initialize
DBI with driver(s) that you are going to use (usually a single driver is used), if you want to mini-
mize memory use after forking the child processes. Note that you want to do this under mod_perl and
other environments where the shared memory is very important. Otherwise you shouldn’t initialize
drivers.

You probably know already that under mod_perl you should use the Apache::DBI module to get
the connection persistence, unless you open a separate connection for each user--in this case you
should not use this module. Apache::DBI automatically loads DBI and overrides some of its
methods, so you should continue coding like there is only a DBI module.

Just as with modules preloading our goal is to find the startup environment that will lead to the small-
est "difference" between the shared and normal memory reported, therefore a smaller total memory
usage.

And again in order to have an easy measurement we will use only one child process, therefore we will
use this setting in httpd.conf:

5510 May 2001

6.11 Preload Perl modules at server startupmod_perl Tutorial: Performance Tuning

 MinSpareServers 1
 MaxSpareServers 1
 StartServers 1
 MaxClients 1
 MaxRequestsPerChild 100

We always preload these modules:

 use Gtop();
 use Apache::DBI(); # preloads DBI as well

We are going to run memory benchmarks on five different versions of the startup.pl file.

option 1

Leave the file unmodified.

option 2

Install MySQL driver (we will use MySQL RDBMS for our test):

 DBI->install_driver("mysql");

It’s safe to use this method, since just like with use() , if it can’t be installed it’ll die().

option 3

Preload MySQL driver module:

 use DBD::mysql;

option 4

Tell Apache::DBI to connect to the database when the child process starts (Chil -
dInitHandler), no driver is preload before the child gets spawned!

 Apache::DBI->connect_on_init(’DBI:mysql:test::localhost’,
 "",
 "",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes
 # immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

option 5

10 May 200156

Stas Bekman6.11 Preload Perl modules at server startup

Options 2 and 4: using connect_on_init() and install_driver().

Here is the Apache::Registry test script that we have used:

 preload_dbi.pl

 use strict;
 use GTop ();
 use DBI ();

 my $dbh = DBI->connect("DBI:mysql:test::localhost",
 "",
 "",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes
 # immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

 my $r = shift;
 $r->send_http_header(’text/plain’);

 my $do_sql = "show tables";
 my $sth = $dbh->prepare($do_sql);
 $sth->execute();
 my @data = ();
 while (my @row = $sth->fetchrow_array){
 push @data, @row;
 }
 print "Data: @data\n";
 $dbh->disconnect(); # NOP under Apache::DBI

 my $proc_mem = GTop->new->proc_mem($$);
 my $size = $proc_mem->size;
 my $share = $proc_mem->share;
 my $diff = $size - $share;
 printf "%8s %8s %8s\n", qw(Size Shared Diff);
 printf "%8d %8d %8d (bytes)\n",$size,$share,$diff;

The script opens a opens a connection to the database ’test’ and issues a query to learn what tables the
databases has. When the data is collected and printed the connection would be closed in the regular
case, but Apache::DBI overrides it with empty method. When the data is processed a familiar to
you already code to print the memory usage follows.

The server was restarted before each new test.

So here are the results of the five tests that were conducted, sorted by the Diff column:

1.

After the first request:

5710 May 2001

6.11 Preload Perl modules at server startupmod_perl Tutorial: Performance Tuning

 Test type Size Shared Diff
 --
 install_driver (2) 3465216 2621440 843776
 install_driver & connect_on_init (5) 3461120 2609152 851968
 preload driver (3) 3465216 2605056 860160
 nothing added (1) 3461120 2494464 966656
 connect_on_init (4) 3461120 2482176 978944

2.

After the second request (all the subsequent request showed the same results):

 Test type Size Shared Diff
 --
 install_driver (2) 3469312 2609152 860160
 install_driver & connect_on_init (5) 3481600 2605056 876544
 preload driver (3) 3469312 2588672 880640
 nothing added (1) 3477504 2482176 995328
 connect_on_init (4) 3481600 2469888 1011712

Now what do we conclude from looking at these numbers. First we see that only after a second reload
we get the final memory footprint for a specific request in question (if you pass different arguments
the memory usage might and will be different).

But both tables show the same pattern of memory usage. We can clearly see that the real winner is the
startup.pl file’s version where the MySQL driver was installed (2). Since we want to have a connec-
tion ready for the first request made to the freshly spawned child process, we generally use the version
(5) which uses somewhat more memory, but has almost the same number of shared memory pages.
The version (3) only preloads the driver which results in smaller shared memory. The last two
versions having nothing initialized (1) and having only the connect_on_init() method used (4).
The former is a little bit better than the latter, but both significantly worse than the first two versions.

To remind you why do we look for the smallest value in the column diff, recall the real memory usage
formula:

 RAM_dedicated_to_mod_perl = diff * number_of_processes
 + the_processes_with_largest_shared_memory

Notice that the smaller the diff is, the bigger the number of processes you can have using the same
amount of RAM. Therefore every 100K difference counts, when you multiply it by the number of
processes. If we take the number from the version (2) vs. (4) and assume that we have 256M of
memory dedicated to mod_perl processes we will get the following numbers using the formula derived
from the above formula:

 RAM - largest_shared_size
 N_of Procs = -------------------------
 Diff

 268435456 - 2609152
 (ver 2) N = ------------------- = 309
 860160

10 May 200158

Stas Bekman6.11 Preload Perl modules at server startup

 268435456 - 2469888
 (ver 4) N = ------------------- = 262
 1011712

So you can tell the difference (17% more child processes in the first version).

6.12 Preload Registry Scripts
Apache::Registry Loader compiles Apache::Registry scripts at server startup. It can be a
good idea to preload the scripts you are going to use as well. So the code will be shared among the
children.

Here is an example of the use of this technique. This code is included in a Perl Require ’d file, and
walks the directory tree under which all registry scripts are installed. For each .pl file encountered, it
calls the Apache::Registry Loader ::handler() method to preload the script in the parent
server (before pre-forking the child processes):

 use File::Find ’finddepth’;
 use Apache::RegistryLoader ();
 {
 my $perl_dir = "perl/";
 my $rl = Apache::RegistryLoader->new;
 finddepth(sub {
 return unless /\.pl$/;
 my $url = "/$File::Find::dir/$_";
 print "pre-loading $url\n";

 my $status = $rl->handler($url);
 unless($status == 200) {
 warn "pre-load of ‘$url’ failed, status=$status\n";
 }
 }, $perl_dir);
 }

Note that we didn’t use the second argument to handler() here, as module’s manpage suggests. To
make the loader smarter about the uri->filename translation, you might need to provide a trans()
function to translate the uri to filename. URI to filename translation normally doesn’t happen until
HTTP request time, so the module is forced to roll its own translation. If filename is omitted and a
trans() routine was not defined, the loader will try using the URI relative to ServerRoot.

6.13 Upload/Download of Big Files
You don’t want to tie up your precious mod_perl backend server children doing something as long and
dumb as transfering a file. The user won’t really see any important performance benefits from
mod_perl anyway, since the upload may take up to several minutes, and the overhead saved by
mod_perl is typically under one second.

If some particular script’s main functionality is the uploading or downloading of big files, you proba-
bly want it to be executed on a plain apache server under mod_cgi.

5910 May 2001

6.12 Preload Registry Scriptsmod_perl Tutorial: Performance Tuning

This of course assumes that the script requires none of the functionality of the mod_perl server, such
as custom authentication handlers.

6.14 Global vs Fully Qualified Vari ables
It’s always a good idea to stay away from global variables when possible. Some variables must be
global so Perl can see them, such as a module’s @ISA or $VERSION variables (or fully qualified
@MyModule::ISA). In common practice, a combination of strict and vars pragmas keeps
modules clean and reduces a bit of noise. However, vars pragma also creates aliases as the
Exporter does, which eat up more memory. When possible, try to use fully qualified names instead
of use vars. Example:

 package MyPackage;
 use strict;
 @MyPackage::ISA = qw(...);
 $MyPackage::VERSION = "1.00";

vs.

 package MyPackage;
 use strict;
 use vars qw(@ISA $VERSION);
 @ISA = qw(...);
 $VERSION = "1.00";

6.15 Forking or Executing subprocesses from mod_perl
Generally you should not fork from your mod_perl scripts, since when you do -- you are forking the
entire apache web server, lock, stock and barrel. Not only is your perl code being duplicated, but so is
mod_ssl, mod_rewrite, mod_log, mod_proxy, mod_spelling or whatever modules you have used in
your server, all the core routines and so on.

A much wiser approach would be to spawn a sub-process, hand it the information it needs to do the
task, and have it detach (close STD* + setsid()). This is wise only if the parent who spawns this
process, immediately continues, you do not wait for the sub-process to complete. This approach is
suitable for a situation when you want to trigger a long time taking process through the web interface,
like processing some data, sending email to thousands of subscribed users and etc. Otherwise, you
should convert the code into a module, and use its functions or methods to call from CGI script.

Just making a system() call defeats the whole idea behind mod_perl, perl interpreter and modules
should be loaded again for this external program to run.

Basically, you would do:

 $params=FreezeThaw::freeze(
 [all data to pass to the other process]
);
 system("program.pl $params");

10 May 200160

Stas Bekman6.14 Global vs Fully Qualified Variables

and in program.pl :

 use POSIX qw(setsid);
 @params=FreezeThaw::thaw(shift @ARGV);
 # check that @params is ok
 close STDIN;
 close STDOUT;
 close STDERR;
 # you might need to reopen the STDERR
 # open STDERR, ">/dev/null";
 setsid(); # to detach

At this point, program.pl is running in the ‘‘background’’ while the system() returns and
permits apache to get on with life.

This has obvious problems. Not the least of which is that @params must not be bigger then whatever
your architecture’s limit is (could depend on your shell).

Also, the communication is only one way.

However, you might want be trying to do the ‘‘wrong thing’’. If what you want is to send information
to the browser and then do some post-processing, look into Perl CleanupHan dler .

If you are interested in more deep level details, this is what actually happens when you fork and make
a system call, like

 system("echo Hi"),CORE::exit(0) unless fork();

which is might be more familiar in this form:

 if (fork){
 #do nothing
 } else {
 system("echo Hi");
 CORE::exit(0);
 }

What happens is that fork() gives you 2 execution paths and the child gets virtual memory sharing a
copy of the program text (read only) and sharing a copy of the data space copy-on-write (remember
why you pre-load modules in mod_perl?). In the above code a parent will immediately continue with
the code that comes up after the fork, while the forked process will execute system("echo Hi")
and then terminate itself.

Notice that I use CORE::exit and not exit which would be automatically overriden by
Apache::exit if used in conjunction with Apache::Registry and friends.

The only work is setting up the page tables for the virtual memory and the second process goes on its
separate way.

Next, Perl will find /bin/echo along the search path, and invoke it directly. Perl system() is
not system(3) [C-library]. Only when the command has shell meta-chars does Perl invoke a real
shell. That’s a *very* nice optimization.

6110 May 2001

6.15 Forking or Executing subprocesses from mod_perlmod_perl Tutorial: Performance Tuning

Only if you do:

 system "sh -c ’echo foo’"

OS actually parses your command with a shell so you exec() a copy of /bin/sh , but since one is
almost certainly already running somewhere, the system will notice that (via the disk inode reference)
and replace your virtual memory page table with one pointed at the already-loaded program code plus
your own data space. Then the shell parses the passed command.

Since it is echo , it will execute it as a built-in in the latter example or a /bin/echo in the former
and be done, but this is only an example. You aren’t calling system("echo Hi") in your
mod_perl scripts, right? Since most other real things (heavy programs executed as a subprocess)
would involve repeating the process to load the specified command or script (it might involve some
actual demand paging from the program file if you execute new code).

The only place you see real overhead from this scheme is when the parent process is huge (unfortu-
nately like mod_perl...) and the page table becomes large as a side effect. The whole point of
mod_perl is to avoid having to fork() / exec() something on every hit, though. Perl can do just
about anything by itself. However, you probably won’t get in trouble until you hit about 30 forks/sec
on a so-so pentium.

Now let’s get to the gory details of forking.

6.15.1 Freeing the Parent Process

In the child code you must also close all the pipes to the connection socket that were opened by the
parent process (i.e. STDIN and STDOUT) and inherited by the child, so the parent will be able to
complete the request and free itself for serving other requests. If you need the STDIN and/or STDOUT
streams you should re-open them. You may need to close or re-open the STDERR filehandle. It’s
opened to append to the error_log file as inherited from its parent, so chances are that you will want to
leave it untouched.

Under mod_perl, the spawned process also inherits the file descriptor that’s tied to the socket through
which all the communications between the server and the client happen. Therefore we need to free this
stream in the forked process. If we don’t do that, the server cannot be restarted while the spawned
process is still running. If an attempt is made to restart the server you will get the following error:

 [Mon Dec 11 19:04:13 2000] [crit]
 (98)Address already in use: make_sock:
 could not bind to address 127.0.0.1 port 8000

Apache::SubPro cess comes to help and provides a method cleanup_for_exec() which
takes care of closing this file descriptor.

So the simplest way is to freeing the parent process is to close all three STD* streams if we don’t need
them and untie the Apache socket. In addition you may want to change process’ current directory to /
so the forked process won’t keep the mounted partition busy, if this is to be unmounted at a later time.
To summarize all this issues, here is an example of the fork that takes care of freeing the parent
process.

10 May 200162

Stas Bekman6.15.1 Freeing the Parent Process

 use Apache::SubProcess;
 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 $r->cleanup_for_exec(); # untie the socket
 chdir ’/’ or die "Can’t chdir to /: $!";
 close STDIN;
 close STDOUT;
 close STDERR;

 # some code comes here

 CORE::exit(0);
 }
 # possibly more code here usually run by the parent

Of course between the freeing the parent code and child process termination the real code is to be
placed.

6.15.2 Detaching the Forked Process

Now what happens if the forked process is running and we decided that we need to restart the
web-server? This forked process will be aborted, since when parent process will die during the restart
it’ll kill its child processes as well. In order to avoid this we need to detach the process from its parent
session, by opening a new session with help of setsid() system call, provided by the POSIX
module:

 use POSIX ’setsid’;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 setsid or die "Can’t start a new session: $!";
 ...
 }

Now the spawned child process has a life of its own, and it doesn’t depend on the parent anymore.

6.15.3 Avoiding Zombie Processes

Normally, every process has its parent. Many processes are children of the init process, whose PID
equals to 1. When you fork a process you must wait() or waitpid() for it to finish. If you don’t
wait for it becomes a zombie.

Zombie, is a process that doesn’t have a father. When the child quits, it reports the termination to his
parent. If no one wait()s to collect the exit status of the child, it gets ‘‘confused’’ and becomes a
ghost process, that can be seen, but not killed. It will be killed only when you stop the httpd process
that spawned it! (generally top()/ps() utilities display these processes with <defunc > tag, and
you will see an increment of the zombies counter reported when doing top().) These zombie
processes can take up system resources and are generally undesirable.

6310 May 2001

6.15.2 Detaching the Forked Processmod_perl Tutorial: Performance Tuning

So the proper fork is:

 print "Content-type: text/plain\n\n";

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
 } else {
 # do something
 CORE::exit(0);
 }

But in most cases the only reason you would want to fork is when you need to spawn a process that
would take a lot of time to complete. So if the server child that spawns this process has to wait for it to
finish, you gained nothing. You cannot neither wait for its completion, nor continue because you will
get yet another zombie process.

The simplest solution is to ignore your dead children (this doesn’t work everywhere, however).

 $SIG{CHLD} = IGNORE;

When you set CHLD signal handler to IGNORE, all the processes will be collected by the init
process and prevent from them to become zombies.

Note, that you cannot localize this setting with local() . If you do, it wouldn’t take the desired
effect.

The other thing that you must do -- is to close all the pipes to the connection socket that were opened
by the parent process (a STDIN and a STDOUT) and inherited by the child, so the parent will be able
to complete the request and free itself for serving other requests. You may need to close and reopen a
STDERR filehandler (It’s opened to append to the error_log file as inhereted by parent, so chances are
that you want it to leave untouched).

So now the code would look like:

 print "Content-type: text/plain\n\n";

 $SIG{CHLD} = IGNORE;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
 } else {
 close STDIN;
 close STDOUT;
 close STDERR;
 # do something long lasting
 CORE::exit(0);
 }

10 May 200164

Stas Bekman6.15.3 Avoiding Zombie Processes

Another more portable, but slightly more expensive solution is to use a double fork approach.

 print "Content-type: text/plain\n\n";

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 } else {
 defined (my $grandkid = fork) or die "Kid cannot fork: $!\n";
 if ($grandkid) {
 CORE::exit(0);

 } else {
 # code here
 close STDIN;
 close STDOUT;
 close STDERR;
 # do something long lasting
 CORE::exit(0);
 }
 }

Grandkid becomes a "child of init" (parent process ID is 1).

Note that the last two solutions do allow you to know the exit status of the process, but in our case we
don’t want to.

One more solution is to use a different SIGCHLD handler:

 use POSIX ’WNOHANG’;
 $SIG{CHLD} = sub { while(waitpid(-1,WNOHANG)>0) {} };

Which is usefull when you fork() more than once process. The handler could call wait() as well,
but for a variety of reasons involving tge handling of stopped processes and the rare event in which
two children exit at nearly the same moment, the best technique is to call waitpid() in a tight loop
with a first argument of -1 and a second argument of WNOHANG. Together these arguments tell
waitpid() to reap the next child that’s available, and prevent the call from blocking if there
happens to be no child ready from reaping. The handler will loop untill waitpid() returns a nega-
tive number or zero, indicating that no more reapable children remain.

You will probably want to open your own log file in the spawned process and log some info so you
know what have happened there. At least while debugging your code.

6.15.4 A Complete Fork Example

Now let’s put all the bits of code together and show a well written fork code that solves all the prob-
lems discussed so far. We will use an <Apache::Registry> script for this purpose:

6510 May 2001

6.15.4 A Complete Fork Examplemod_perl Tutorial: Performance Tuning

 proper_fork1.pl

 use strict;
 use POSIX ’setsid’;
 use Apache::SubProcess;

 my $r = shift;
 $r->send_http_header("text/plain");

 $SIG{CHLD} = ’IGNORE’;
 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 print "Parent $$ has finished, kid’s PID: $kid\n";
 } else {
 $r->cleanup_for_exec(); # untie the socket
 chdir ’/’ or die "Can’t chdir to /: $!";
 open STDIN, ’/dev/null’ or die "Can’t read /dev/null: $!";
 open STDOUT, ’>/dev/null’
 or die "Can’t write to /dev/null: $!";
 open STDERR, ’>/tmp/log’ or die "Can’t write to /tmp/log: $!";
 setsid or die "Can’t start a new session: $!";

 my $oldfh = select STDERR;
 local $| = 1;
 select $oldfh;
 warn "started\n";
 # do something time-consuming
 sleep 1, warn "$_\n" for 1..20;
 warn "completed\n";

 CORE::exit(0); # terminate the process
 }

The script starts with the usual declaration of the strict mode, loading the POSIX and
Apache::SubPro cess modules and importing of the setsid() symbol from the POSIX
package.

The HTTP header is sent next, with the Content-type of text/plain. The gets ready to ignore the child,
to avoid zombies and the fork is called.

The program gets its personality split after fork and the if conditional evaluates to a true value for the
parent process, and to a false value for the child process, therefore the first block is executed by the
parent and the second by the child.

The parent process announces his PID and the PID of the spawned process and finishes its block. If
there will be any code outside it will be executed by the parent as well.

The child process starts its code by disconnecting from the socket, changing its current directory to / ,
opening the STDIN and STDOUT streams to /dev/null, which in effect closes them both before
opening. In fact in this example we don’t need neither of these, so we could just close() both. The
child process completes its disengagement from the parent process by opening the STDERR stream to
/tmp/log, so it could write there, and creating a new session with help of setsid(). Now the child
process has nothing to do with the parent process and can do the actual processing that it has to do. In
our example it performs a simple series of warnings, which are logged into /tmp/log:

10 May 200166

Stas Bekman6.15.4 A Complete Fork Example

 my $oldfh = select STDERR;
 local $| = 1;
 select $oldfh;
 warn "started\n";
 # do something time-consuming
 sleep 1, warn "$_\n" for 1..20;
 warn "completed\n";

The localized setting of $|=1 unbuffers the STDERR stream, so we can immediately see the debug
output generated by the program. In fact this setting is not required when the output is generated by
warn().

Finally the child process terminates by calling:

 CORE::exit(0);

which make sure that it won’t get out of the block and run some code that it’s not supposed to run.

This code example will allow you to verify that indeed the spawned child process has its own life, and
its parent is free as well. Simply issue a request that will run this script, watch that the warnings are
started to be written into the /tmp/log file and issue a complete server stop and start. If everything is
correct, the server will successfully restart and the long term process will still be running. You will
know that it’s still running, if the warnings will still be printed into the /tmp/log file. You may need to
raise the number of warnings to do above 20, to make sure that you don’t miss the end of the run.

If there are only 5 warnings to be printed, you should see the following output in this file:

 started
 1
 2
 3
 4
 5
 completed

6.16 Sending plain HTML as a compressed output
Have you ever served a huge HTML file (e.g. a file bloated with JavaScript code) and wandered how
could you send it compressed, thus drammatically cutting down the download times. After all java
applets can be compressed into a jar and benefit from a faster download times. Why cannot we do the
same with a plain ASCII (HTML,JS and etc), it is a known fact that ASCII text can be compressed by
a factor of 10.

Apache::GzipChain comes to help you with this task. If a client (browser) understands gzip
encoding this module compresses the output and sends it downstream. A client decompresses the data
upon receive and renders the HTML as if it was a plain HTML fetch.

For example to compress all html files on the fly, do:

6710 May 2001

6.16 Sending plain HTML as a compressed outputmod_perl Tutorial: Performance Tuning

 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::PassFile
 </Files>

Remember that it will work only if the browser claims to accept compressed input, thru
Accept-Encod ing header. Apache::GzipChain keeps a list of user-agents, thus it also looks
at User-Agent header, for known to accept compressed output browsers.

For example if you want to return compressed files which should pass in addition through Embperl
module, you would write:

 <Location /test>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::EmbperlChain Apache::PassFile
 </Location>

Hint: Watch an access_log file to see how many bytes were actually send, compare with a regular
configuration send.

(See perldoc Apache::GzipChain).

Notice that the rightmost PerlHandler must be a content producer. Use Apache::Pass File or
another similar module.

;o)

10 May 200168

Stas Bekman6.16 Sending plain HTML as a compressed output

7 Perl Reference

6910 May 2001

7 Perl Referencemod_perl Tutorial: Perl Reference

7.1 What we will learn in this chapter
perldoc’s Rarely Known But Very Useful Options

Tracing Warnings Reports

Variables Globally, Lexically Scoped And Fully Qualified

my() Scoped Variable in Nested Subroutines

When You Cannot Get Rid of The Inner Subroutine

use(), require(), do(), %INC and @INC Explained

Using Global Variables and Sharing Them Between Modules/Packages

The Scope of the Special Perl Variables

Compiled Regular Expressions

Exception Handling for mod_perl

7.2 perldoc’s Rarely Known But Very Useful Options
First of all, I want to stress that you cannot become a Perl hacker without knowing how to read Perl
documentation and search through it. Books are good, but an easily accessible and searchable Perl
reference is at your fingertips and is a great time saver.

While you can use online Perl documentation at the Web, the perldoc utility provides you with
access to the documentation installed on your system. To find out what Perl manpages are available
execute:

 % perldoc perl

To find what functions perl has, execute:

 % perldoc perlfunc

To learn the syntax and to find examples of a specific function, you would execute (e.g. for open()):

 % perldoc -f open

Note: In perl5.00503 and earlier, there is a bug in this and the -q options of perldoc . It won’t call
pod2man, but will display the section in POD format instead. Despite this bug it’s still readable and
very useful.

To search through the Perl FAQ (perlfaq manpage) sections you would (e.g for the open keyword)
execute:

10 May 200170

Stas Bekman7.1 What we will learn in this chapter

 % perldoc -q open

This will show you all the matching Q&A sections, still in POD format.

To read the perldoc manpage you execute:

 % perldoc perldoc

7.3 Tracing Warn ings Reports
Sometimes it’s very hard to understand what a warning is complaining about. You see the source
code, but you cannot understand why some specific snippet produces that warning. The mystery often
results from the fact that the code can be called from different places if it’s located inside a subroutine.

Here is an example:

 warnings.pl

 #!/usr/bin/perl -w

 correct();
 incorrect();

 sub correct{
 print_value("Perl");
 }

 sub incorrect{
 print_value();
 }

 sub print_value{
 my $var = shift;
 print "My value is $var\n";
 }

In the code above, print_value() prints the passed value, correct() passes the value to print
and in incor rect () we forgot to pass it. When we run the script:

 % ./warnings.pl

we get the warning:

 Use of uninitialized value at ./warnings.pl line 16.

Perl complains about an undefined variable $var at the line that attempts to print its value:

 print "My value is $var\n";

7110 May 2001

7.3 Tracing Warnings Reportsmod_perl Tutorial: Perl Reference

But how do we know why it is undefined? The reason here obviously is that the calling function didn’t
pass the argument. But how do we know who was the caller? In our example there are two possible
callers, in the general case there can be many of them, perhaps located in other files.

We can use the caller() function, which tells who has called us, but even that might not be
enough: it’s possible to have a longer sequence of called subroutines, and not just two. For example,
here it is sub third() which is at fault, and putting sub caller() in sub second() would not
help us very much:

 sub third{
 second();
 }
 sub second{
 my $var = shift;
 first($var);
 }
 sub first{
 my $var = shift;
 print "Var = $var\n"
 }

The solution is quite simple. What we need is a full calls stack trace to the call that triggered the
warning.

The Carp module comes to our aid with its cluck() function. Let’s modify the script by adding a
couple of lines. The rest of the script is unchanged.

 warnings2.pl

 #!/usr/bin/perl -w

 use Carp ();
 local $SIG{__WARN__} = \&Carp::cluck;

 correct();
 incorrect();

 sub correct{
 print_value("Perl");
 }

 sub incorrect{
 print_value();
 }

 sub print_value{
 my $var = shift;
 print "My value is $var\n";
 }

Now when we execute it, we see:

 Use of uninitialized value at ./warnings2.pl line 19.
 main::print_value() called at ./warnings2.pl line 14
 main::incorrect() called at ./warnings2.pl line 7

10 May 200172

Stas Bekman7.3 Tracing Warnings Reports

Take a moment to understand the calls stack trace. The deepest calls are printed first. So the second
line tells us that the warning was triggered in print_value(); the third, that print_value()
was called by incor rect () subroutine.

 script => incorrect() => print_value()

We go into incor rect () and indeed see that we forgot to pass the variable. Of course when you
write a subroutine like print_value it would be a good idea to check the passed arguments before
starting execution. We omitted that step to contrive an easily debugged example.

Sure, you say, I could find that problem by simple inspection of the code!

Well, you’re right. But I promise you that your task would be quite complicated and time consuming
if your code has some thousands of lines. In addition, under mod_perl, certain uses of the eval opera-
tor and ‘‘here documents’’ are known to throw off Perl’s line numbering, so the messages reporting
warnings and errors can have incorrect line numbers.

Getting the trace helps a lot.

7.4 Vari ables Globally, Lexically Scoped And Fully Quali-
fied
Also see the clarification of my() vs. use vars - Ken Williams writes:

 Yes, there is quite a bit of difference! With use vars(), you are
 making an entry in the symbol table, and you are telling the
 compiler that you are going to be referencing that entry without an
 explicit package name.

 With my(), NO ENTRY IS PUT IN THE SYMBOL TABLE. The compiler
 figures out C<at compile time> which my() variables (i.e. lexical
 variables) are the same as each other, and once you hit execute time
 you cannot go looking those variables up in the symbol table.

And my() vs. local() - Randal Schwartz writes:

 local() creates a temporal-limited package-based scalar, array,
 hash, or glob -- when the scope of definition is exited at runtime,
 the previous value (if any) is restored. References to such a
 variable are *also* global... only the value changes. (Aside: that
 is what causes variable suicide. :)

 my() creates a lexically-limited non-package-based scalar, array, or
 hash -- when the scope of definition is exited at compile-time, the
 variable ceases to be accessible. Any references to such a variable
 at runtime turn into unique anonymous variables on each scope exit.

7310 May 2001

7.4 Variables Globally, Lexically Scoped And Fully Qualifiedmod_perl Tutorial: Perl Reference

7.5 my() Scoped Vari able in Nested Subroutines
Before we proceed let’s make the assumption that we want to develop the code under the strict
pragma. We will use lexically scoped variables (with help of the my() operator) whenever it’s possi-
ble.

7.5.1 The Poison

Let’s look at this code:

 nested.pl

 #!/usr/bin/perl

 use strict;

 sub print_power_of_2 {
 my $x = shift;

 sub power_of_2 {
 return $x ** 2;
 }

 my $result = power_of_2();
 print "$x^2 = $result\n";
 }

 print_power_of_2(5);
 print_power_of_2(6);

Don’t let the weird subroutine names to fool you, the print_power_of_2() subroutine should
print the square of the passed number. Let’s run the code and see whether it works:

 % ./nested.pl

 5^2 = 25
 6^2 = 25

Ouch, something is wrong. May be there is a bug in Perl and it doesn’t work correctly with number 6?
Let’s try again using the 5 and 7:

 print_power_of_2(5);
 print_power_of_2(7);

And run it:

 % ./nested.pl

 5^2 = 25
 7^2 = 25

10 May 200174

Stas Bekman7.5 my() Scoped Variable in Nested Subroutines

Wow, does it works only for 5? How about using 3 and 5:

 print_power_of_2(3);
 print_power_of_2(5);

and the result is:

 % ./nested.pl

 3^2 = 9
 5^2 = 9

Now we start to understand--only the first call to the print_power_of_2() function works
correctly. Which makes us think that our code has some kind of memory for results of the first execu-
tion, or it ignores the arguments in subsequent executions.

7.5.2 The Diagnosis

Let’s follow the guidelines and use the -w flag. Now execute the code:

 % ./nested.pl

 Variable "$x" will not stay shared at ./nested.pl line 9.
 5^2 = 25
 6^2 = 25

We have never seen such a warning message before and we don’t quite understand what it means. The
diag nos tics pragma will certainly help us. Let’s prepend this pragma before the strict pragma
in our code:

 #!/usr/bin/perl -w

 use diagnostics;
 use strict;

And execute it:

7510 May 2001

7.5.2 The Diagnosismod_perl Tutorial: Perl Reference

 % ./nested.pl

 Variable "$x" will not stay shared at ./nested.pl line 10 (#1)

 (W) An inner (nested) named subroutine is referencing a lexical
 variable defined in an outer subroutine.

 When the inner subroutine is called, it will probably see the value of
 the outer subroutine’s variable as it was before and during the
 first call to the outer subroutine; in this case, after the first
 call to the outer subroutine is complete, the inner and outer
 subroutines will no longer share a common value for the variable. In
 other words, the variable will no longer be shared.

 Furthermore, if the outer subroutine is anonymous and references a
 lexical variable outside itself, then the outer and inner subroutines
 will never share the given variable.

 This problem can usually be solved by making the inner subroutine
 anonymous, using the sub {} syntax. When inner anonymous subs that
 reference variables in outer subroutines are called or referenced,
 they are automatically rebound to the current values of such
 variables.

 5^2 = 25
 6^2 = 25

Well, now everything is clear. We have the inner subroutine power_of_2() and the outer subrou-
tine print_power_of_2() in our code.

When the inner power_of_2() subroutine is called for the first time, it sees the value of the outer
print_power_of_2() subroutine’s $x variable. On subsequent calls the $x variable won’t be
updated, no matter what the value of it in the outer subroutine. There are two copies of the $x vari-
able, no longer a single one shared by the two routines.

7.5.3 The Remedy

The diag nos tics pragma suggests that the problem can be solved by making the inner subroutine
anonymous.

An anonymous subroutine can act as a closure with respect to lexically scoped variables. Basically
this means that if you define a subroutine in a particular lexical context at a particular moment, then it
will run in that same context later, even if called from outside that context. The upshot of this is that
when the subroutine runs, you get the same copies of the lexically scoped variables which were
visible when the subroutine was defined. So you can pass arguments to a function when you define it,
as well as when you invoke it.

Let’s rewrite the code to use this technique:

10 May 200176

Stas Bekman7.5.3 The Remedy

 anonymous.pl

 #!/usr/bin/perl

 use strict;

 sub print_power_of_2 {
 my $x = shift;

 my $func_ref = sub {
 return $x ** 2;
 };

 my $result = &$func_ref();
 print "$x^2 = $result\n";
 }

 print_power_of_2(5);
 print_power_of_2(6);

Now $func_ref contains a reference to an anonymous function, which we later use when we need
to get the power of two. (In Perl, a function is the same thing as a subroutine.) Since it is anonymous,
the function will automatically be rebound to the new value of the outer scoped variable $x, and the
results will now be as expected.

Let’s verify:

 % ./anonymous.pl

 5^2 = 25
 6^2 = 36

Indeed, anonymous.pl worked as we expected.

7.6 When You Cannot Get Rid of The Inner Subroutine
First you might wonder, why in the world will someone need to define an inner subroutine? Well, for
example to reduce some of Perl’s script startup overhead you might decide to write a daemon that will
compile the scripts and modules only once, and cache the pre-compiled code in memory. When some
script is to be executed, you just tell the daemon the name of the script to run and it will do the rest
and do it much faster.

Seems like an easy task, and it is. The only problem is once the script is compiled, how do you
execute it? Or let’s put it the other way: after it was executed for the first time and it stays compiled in
the daemon memory, how do you call it again? If you could get all developers to code the scripts so
each has a subroutine called run() that will actually execute the code in the script then you have half
of the problem solved.

But how does the daemon know to refer to some specific script if they all run in the main:: name
space? One solution might be to ask the developers to declare a package in each and every script, and
for the package name to be derived from the script name. However, since there is chance that there
will be more than one script with the same name but residing in different directories, then in order to
prevent name-space collisions the directory has to be a part of the package name too. And don’t forget

7710 May 2001

7.6 When You Cannot Get Rid of The Inner Subroutinemod_perl Tutorial: Perl Reference

that script may be moved from one directory to another, so you will have to make sure that the
package name is corrected every time the script gets moved.

But why enforce these strange rules on developers, when we can arrange for our daemon to do this
work? For every script that daemon is about to execute for the first time, it should be wrapped inside
the package whose name is constructed from the mangled path to the script and a subroutine called
run(). For example if the daemon is about to execute the script /tmp/hello.pl:

 hello.pl

 #!/usr/bin/perl
 print "Hello\n";

Prior to running it, the daemon will change the code to be:

 wrapped_hello.pl

 package cache::tmp::hello_2epl;

 sub run{
 #!/usr/bin/perl
 print "Hello\n";
 }

The package name is constructed from the prefix cache:: , each directory separation slash is
replaced with :: , and non alphanumeric characters are encoded so that for example . (a dot) becomes
_2e (an underscore followed by the ASCII code for a dot in hex representation).

 % perl -e ’printf "%x",ord(".")’

prints: 2e . The underscore is the same you see in URL encoding where % character is used instead
(%2E), but since % has a special meaning in Perl (prefix of hash variable) it couldn’t be used.

Now when the daemon is requested to execute the script /tmp/hello.pl, all it has to do is to build the
package name as before based on the location of the script and call its run() subroutine:

 use cache::tmp::hello_2epl;
 cache::tmp::hello_2epl::run();

We have just written a partial prototype of the daemon we desired. The only method now remaining
undefined is how to pass the path to the script to the daemon. This detail is left to the reader as an
exercise.

If you are familiar with the Apache::Registry module, you know that it works in almost the
same way. It uses a different package prefix and the generic function is called handler() and not
run(). The scripts to run are passed through the HTTP protocol’s headers.

Now you understand that there are cases where your normal subroutines can become inner, since if
your script was a simple:

10 May 200178

Stas Bekman7.6 When You Cannot Get Rid of The Inner Subroutine

 simple.pl

 #!/usr/bin/perl
 sub hello { print "Hello" }
 hello();

Wrapped into a run() subroutine it becomes:

 simple.pl

 package cache::simple_2epl;

 sub run{
 #!/usr/bin/perl
 sub hello { print "Hello" }
 hello();
 }

Therefore, hello() is an inner subroutine and if you have used my() scoped variables defined and
altered outside and used inside hello(), it won’t work as you expect starting from the second call,
as was explained in the previous section.

7.6.1 Remedies for Inner Subroutines

First of all there is nothing to worry about, as long as you don’t forget to turn the warnings On. If you
do happen to have the ‘‘ my() Scoped Variable in Nested Subroutines’’ problem, Perl will always alert
you.

Given that you have a script that has this problem, what are the ways to solve it? There are many of
them and we will discuss some of them here.

We will use the following code to show the different solutions.

7910 May 2001

7.6.1 Remedies for Inner Subroutinesmod_perl Tutorial: Perl Reference

 multirun.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 } # end of sub run

This code executes the run() subroutine three times, which in turn initializes the $counter vari-
able to 0, every time it executed and then calls the inner subroutine incre ment _counter() twice.
Sub incre ment _counter() prints $counter ’s value after incrementing it. One might expect to
see the following output:

 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 3]
 Counter is equal to 1 !
 Counter is equal to 2 !

But as we have already learned from the previous sections, this is not what we are going to see.
Indeed, when we run the script we see:

 % ./multirun.pl

 Variable "$counter" will not stay shared at ./nested.pl line 18.
 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 3 !
 Counter is equal to 4 !
 run: [time 3]
 Counter is equal to 5 !
 Counter is equal to 6 !

10 May 200180

Stas Bekman7.6.1 Remedies for Inner Subroutines

Obviously, the $counter variable is not reinitialized on each execution of run(). It retains its
value from the previous execution, and sub incre ment _counter() increments that.

One of the workarounds is to use globally declared variables, with the vars pragma.

 multirun1.pl

 #!/usr/bin/perl -w

 use strict;
 use vars qw($counter);

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 $counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 } # end of sub run

If you run this and the other solutions offered below, the expected output will be generated:

 % ./multirun1.pl

 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 3]
 Counter is equal to 1 !
 Counter is equal to 2 !

By the way, the warning we saw before has gone, and so has the problem, since there is no my()
(lexically defined) variable used in the nested subroutine.

Another approach is to use fully qualified variables. This is better, since less memory will be used, but
it adds a typing overhead:

8110 May 2001

7.6.1 Remedies for Inner Subroutinesmod_perl Tutorial: Perl Reference

 multirun2.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 $main::counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $main::counter++;
 print "Counter is equal to $main::counter !\n";
 }

 } # end of sub run

You can also pass the variable to the subroutine by value and make the subroutine return it after it was
updated. This adds time and memory overheads, so it may not be good idea if the variable can be very
large, or if speed of execution is an issue.

Don’t rely on the fact that the variable is small during the development of the application, it can grow
quite big in situations you don’t expect. For example, a very simple HTML form text entry field can
return a few megabytes of data if one of your users is bored and wants to test how good is your code.
It’s not uncommon to see users Copy-and-Paste 10Mb core dump files into a form’s text fields and
then submit it for your script to process.

10 May 200182

Stas Bekman7.6.1 Remedies for Inner Subroutines

 multirun3.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 $counter = increment_counter($counter);
 $counter = increment_counter($counter);

 sub increment_counter{
 my $counter = shift || 0 ;

 $counter++;
 print "Counter is equal to $counter !\n";

 return $counter;
 }

 } # end of sub run

Finally, you can use references to do the job. The version of incre ment _counter() below
accepts a reference to the $counter variable and increments its value after first dereferencing it.
When you use a reference, the variable you use inside the function is physically the same bit of
memory as the one outside the function. This technique is often used to enable a called function to
modify variables in a calling function.

8310 May 2001

7.6.1 Remedies for Inner Subroutinesmod_perl Tutorial: Perl Reference

 multirun4.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter(\$counter);
 increment_counter(\$counter);

 sub increment_counter{
 my $r_counter = shift || 0;

 $$r_counter++;
 print "Counter is equal to $$r_counter !\n";
 }

 } # end of sub run

Here is yet another and more obscure reference usage. We modify the value of $counter inside the
subroutine by using the fact that variables in @_ are aliases for the actual scalar parameters. Thus if
you called a function with two arguments, those would be stored in $_[0] and $_[1] . In particular,
if an element $_[0] is updated, the corresponding argument is updated (or an error occurs if it is not
updatable).

 multirun5.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter($counter);
 increment_counter($counter);

 sub increment_counter{
 $_[0]++;
 print "Counter is equal to $_[0] !\n";
 }

 } # end of sub run

10 May 200184

Stas Bekman7.6.1 Remedies for Inner Subroutines

Now you have at least five workarounds to choose from.

For more information please refer to perlref and perlsub manpages.

7.7 use(), require(), do(), %INC and @INC Explained

7.7.1 The @INC array

@INC is a special Perl variable which is the equivalent of the shell’s PATH variable. Whereas PATH
contains a list of directories to search for executables, @INC contains a list of directories from which
Perl modules and libraries can be loaded.

When you use(), require() or do() a filename or a module, Perl gets a list of directories from
the @INC variable and searches them for the file it was requested to load. If the file that you want to
load is not located in one of the listed directories, you have to tell Perl where to find the file. You can
either provide a path relative to one of the directories in @INC, or you can provide the full path to the
file.

7.7.2 The %INC hash

%INC is another special Perl variable that is used to cache the names of the files and the modules that
were successfully loaded and compiled by use(), require() or do() functions. Before attempt-
ing to load a file or a module, Perl checks whether it’s already in the %INC hash. If it’s there, the
loading and therefore the compilation are not performed at all. Otherwise the file is loaded into
memory and an attempt is made to compiled it.

If the file is successfully loaded and compiled, a new key-value pair is added to %INC. The key is the
name of the file or module as it was passed to the one of the three functions we have just mentioned,
and if it was found in any of the @INC directories except "." the value is the full path to it in the file
system.

The following examples will make it easier to understand the logic.

First, let’s see what are the contents of @INC on my system:

 % perl -e ’print join "\n", @INC’
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

Notice the . (current directory) is the last directory in the list.

Now let’s load the module strict.pm and see the contents of %INC:

 % perl -e ’use strict; print map {"$_ => $INC{$_}\n"} keys %INC’

 strict.pm => /usr/lib/perl5/5.00503/strict.pm

8510 May 2001

7.7 use(), require(), do(), %INC and @INC Explainedmod_perl Tutorial: Perl Reference

Since strict.pm was found in /usr/lib/perl5/5.00503/ directory and /usr/lib/perl5/5.00503/ is a part
of @INC, %INC includes the full path as the value for the key strict.pm .

Now let’s create the simplest module in /tmp/test.pm :

 test.pm

 1;

It does nothing, but returns a true value when loaded. Now let’s load it in different ways:

 % cd /tmp
 % perl -e ’use test; print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Since the file was found relative to . (the current directory), the relative path is inserted as the value.
If we alter @INC, by adding /tmp to the end:

 % cd /tmp
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Here we still get the relative path, since the module was found first relative to "." . The directory /tmp
was placed after . in the list. If we execute the same code from a different directory, the "." direc-
tory won’t match,

 % cd /
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

so we get the full path. We can also prepend the path with unshift(), so it will be used for match-
ing before "." and therefore we will get the full path as well:

 % cd /tmp
 % perl -e ’BEGIN{unshift @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

The code:

 BEGIN{unshift @INC, "/tmp"}

can be replaced with the more elegant:

10 May 200186

Stas Bekman7.7.2 The %INC hash

 use lib "/tmp";

Which executes the BEGIN block above exactly.

These approaches to modifying @INC can be labor intensive, since if you want to move the script
around in the file-system you have to modify the path. This can be painful, for example, when you
move your scripts from development to a production server.

There is a module called FindBin which solves this problem in the plain Perl world, but unfortu-
nately it won’t work under mod_perl, since it’s a module and as any module it’s loaded only once. So
the first script using it will have all the settings correct, but the rest of the scripts will not if located in
a different directory from the first.

For a completeness of this section, I’ll present this module anyway.

If you use this module, you don’t need to write a hard coded path. The following snippet does all the
work for you (the file is /tmp/load.pl):

 load.pl

 #!/usr/bin/perl

 use FindBin ();
 use lib "$FindBin::Bin";
 use test;
 print "test.pm => $INC{’test.pm’}\n";

In the above example $FindBin::Bin is equal to /tmp. If we move the script somewhere else... e.g.
/tmp/x in the code above $FindBin::Bin equals /home/x.

 % /tmp/load.pl

 test.pm => /tmp/test.pm

Just like with use lib but no hard coded path required.

You can use this workaround to make it work under mod_perl.

 do ’FindBin.pm’;
 unshift @INC, "$FindBin::Bin";
 require test;
 #maybe test::import(...) here if need to import stuff

You will have a slight overhead because you will load from disk and recompile the FindBin module
on each request. So it can be not worth it.

7.7.3 Modules, Libraries and Files

Before we proceed, let’s define what we mean by module, and library or file.

8710 May 2001

7.7.3 Modules, Libraries and Filesmod_perl Tutorial: Perl Reference

The Library or the File

A file which contains perl subroutines and other code.

It generally doesn’t include a package declaration.

Its last statement returns true.

It can be named in any way desired, but generally its extension is .pl or .ph.

Examples:

 config.pl

 $dir = "/home/httpd/cgi-bin";
 $cgi = "/cgi-bin";
 1;

 mysubs.pl

 sub print_header{
 print "Content-type: text/plain\r\n\r\n";
 }
 1;

the Module

A file which contains perl subroutines and other code.

It generally declares a package name at the beginning of it.

Its last statement returns true.

The naming convention requires it to have a .pm extension.

Example:

 MyModule.pm

 package My::Module;
 $My::Module::VERSION = 0.01;

 sub new{ return bless {}, shift;}
 END { print "Quitting\n"}
 1;

7.7.4 require()

require() reads a file containing Perl code and compiles it. Before attempting to load the file it
looks up the argument in %INC to see whether it has already been loaded. If it has, require() just
returns without doing a thing. Otherwise an attempt will be made to load and compile the file.

10 May 200188

Stas Bekman7.7.4 require()

require() has to find the file it has to load. If the argument is a full path to the file, it just tries to
read it. For example:

 require "/home/httpd/perl/mylibs.pl";

If the path is relative, require() will attempt to search for the file in all the directories listed in
@INC. For example:

 require "mylibs.pl";

If there is more than one occurrence of the file with the same name in the directories listed in @INC
the first occurrence will be used.

The file must return TRUE as the last statement to indicate successful execution of any initialization
code. Since you never know what changes the file will go through in the future, you cannot be sure
that the last statement will always return TRUE. That’s why the suggestion is to put ‘‘ 1; ’’ at the end
of file.

Although you should use the real filename for most files, if the file is a module, you may use the
following convention instead:

 require My::Module;

This is equal to:

 require "My/Module.pm";

If require() fails to load the file, either because it couldn’t find the file in question or the code
failed to compile, or it didn’t return TRUE, then the program would die(). To prevent this the
require() statement can be enclosed into an eval() block, as in this example:

 require.pl

 #!/usr/bin/perl -w

 eval { require "/file/that/does/not/exists"};
 if ($@) {
 print "Failed to load, because : $@"
 }
 print "\nHello\n";

When we execute the program:

8910 May 2001

7.7.4 require()mod_perl Tutorial: Perl Reference

 % ./require.pl

 Failed to load, because : Can’t locate /file/that/does/not/exists in
 @INC (@INC contains: /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require.pl line 3.

 Hello

We see that the program didn’t die(), because Hello was printed. This trick is useful when you
want to check whether a user has some module installed, but if she hasn’t it’s not critical, perhaps the
program can run without this module with reduced functionality.

If we remove the eval() part and try again:

 require.pl

 #!/usr/bin/perl -w

 require "/file/that/does/not/exists";
 print "\nHello\n";

 % ./require1.pl

 Can’t locate /file/that/does/not/exists in @INC (@INC contains:
 /usr/lib/perl5/5.00503/i386-linux /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require1.pl line 3.

The program just die()s in the last example, which is what you want in most cases.

For more information refer to the perlfunc manpage.

7.7.5 use()

use(), just like require(), loads and compiles files containing Perl code, but it works with
modules only. The only way to pass a module to load is by its module name and not its filename. If
the module is located in MyCode.pm, the correct way to use() it is:

 use MyCode

and not:

 use "MyCode.pm"

use() translates the passed argument into a file name replacing :: with / and appending .pm at the
end. So My::Module becomes My/Module.pm.

use() is exactly equivalent to:

10 May 200190

Stas Bekman7.7.5 use()

 BEGIN { require Module; import Module LIST; }

Internally it calls require() to do the loading and compilation chores. When require() finishes
its job, import() is called unless () is the second argument. The following pairs are equivalent:

 use MyModule;
 BEGIN {require MyModule; import MyModule; }

 use MyModule qw(foo bar);
 BEGIN {require MyModule; import MyModule ("foo","bar"); }

 use MyModule ();
 BEGIN {require MyModule; }

The first pair exports the default tags. This happens if the module sets @EXPORT to a list of tags to be
exported by default. The module manpage generally describes what modules are exported by default.

The second pair exports all the tags passed as arguments. No default tags are exported unless explic-
itly told to.

The third pair describes the case where the caller does not want any symbols to be imported.

import() is not a builtin function, it’s just an ordinary static method call into the ‘‘ MyModule ’’
package to tell the module to import the list of features back into the current package. See the Exporter
manpage for more information.

When you write your own modules, always remember that it’s better to use @EXPORT_OK instead of
@EXPORT, since the former doesn’t export symbols unless it was asked to. Exports pollute the names-
pace of the module user. Also avoid short or common symbol names to reduce the risk of name
clashes.

When functions and variables aren’t exported you can still access them using their full names, like
$My::Module::bar or $My::Module::foo() . By convention you can use a leading under-
score on names to informally indicate that they are internal and not for public use.

There’s a corresponding ‘‘ no ’’ command that un-imports symbols imported by use , i.e., it calls
unim port Module LIST instead of import() .

7.7.6 do()

While do() behaves almost identically to require(), it reloads the file unconditionally. It doesn’t
check %INC to see whether the file was already loaded.

If do() cannot read the file, it returns undef and sets $! to report the error. If do() can read the
file but cannot compile it, it returns undef and sets an error message in $@. If the file is successfully
compiled, do() returns the value of the last expression evaluated.

9110 May 2001

7.7.6 do()mod_perl Tutorial: Perl Reference

7.8 Using Global Vari ables and Sharing Them Between
Modules/Packages

7.8.1 Making Variables Global

When you first wrote $x in your code you created a global variable. It is visible everywhere in the file
you have used it. If you defined it inside a package, it is visible inside the package. But it will work
only if you do not use strict pragma and you HAVE to use this pragma if you want to run your
scripts under mod_perl.

7.8.2 Making Variables Global With strict Pragma On

First you use :

 use strict;

Then you use:

 use vars qw($scalar %hash @array);

Starting from this moment the variables are global only in the package where you defined them. If you
want to share global variables between packages, here is what you can do.

7.8.3 Using Exporter.pm to Share Global Variables

Assume that you want to share the CGI.pm object (I will use $q) between your modules. For
example, you create it in script.pl , but you want it to be visible in My::HTML . First, you make
$q global.

 script.pl:

 use vars qw($q);
 use CGI;
 use lib qw(.);
 use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
 $q = new CGI;

 My::HTML::printmyheader();

Note that we have imported $q from My::HTML . And My::HTML does the export of $q :

10 May 200192

Stas Bekman7.8 Using Global Variables and Sharing Them Between Modules/Packages

 My/HTML.pm

 package My::HTML;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($q);

 }

 use vars qw($q);

 sub printmyheader{
 # Whatever you want to do with $q... e.g.
 print $q->header();
 }
 1;

So the $q is shared between the My::HTML package and script.pl . It will work vice versa as
well, if you create the object in My::HTML but use it in script.pl . You have true sharing, since if
you change $q in script.pl , it will be changed in My::HTML as well.

What if you need to share $q between more than two packages? For example you want My::Doc to
share $q as well.

You leave My::HTML untouched, and modify script.pl to include:

 use My::Doc qw($q);

Then you write My::Doc exactly like My::HTML - except of course that the content is different :).

One possible pitfall is when you want to use My::Doc in both My::HTML and script.pl. Only if you
add

 use My::Doc qw($q);

into My::HTML will $q be shared. Otherwise My::Doc will not share $q any more. To make things
clear here is the code:

 script.pl:

 use vars qw($q);
 use CGI;
 use lib qw(.);
 use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
 use My::Doc qw($q); # Ditto
 $q = new CGI;

 My::HTML::printmyheader();

9310 May 2001

7.8.3 Using Exporter.pm to Share Global Variablesmod_perl Tutorial: Perl Reference

 My/HTML.pm

 package My::HTML;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($q);

 }

 use vars qw($q);
 use My::Doc qw($q);

 sub printmyheader{
 # Whatever you want to do with $q... e.g.
 print $q->header();

 My::Doc::printtitle(’Guide’);
 }
 1;

 My/Doc.pm

 package My::Doc;
 use strict;

 BEGIN {
 use Exporter ();

 @My::Doc::ISA = qw(Exporter);
 @My::Doc::EXPORT = qw();
 @My::Doc::EXPORT_OK = qw($q);

 }

 use vars qw($q);

 sub printtitle{
 my $title = shift || ’None’;

 print $q->h1($title);
 }
 1;

7.8.4 Using the Perl Aliasing Feature to Share Global Variables

As the title says you can import a variable into a script or module without using Exporter.pm . I
have found it useful to keep all the configuration variables in one module My::Config . But then I
have to export all the variables in order to use them in other modules, which is bad for two reasons:
polluting other packages’ name spaces with extra tags which increase the memory requirements; and
adding the overhead of keeping track of what variables should be exported from the configuration
module and what imported, for some particular package. I solve this problem by keeping all the vari-

10 May 200194

Stas Bekman7.8.4 Using the Perl Aliasing Feature to Share Global Variables

ables in one hash %c and exporting that. Here is an example of My::Config :

 package My::Config;
 use strict;
 use vars qw(%c);
 %c = (
 # All the configs go here
 scalar_var => 5,

 array_var => [
 foo,
 bar,
],

 hash_var => {
 foo => ’Foo’,
 bar => ’BARRR’,
 },
);
 1;

Now in packages that want to use the configuration variables I have either to use the fully qualified
names like $My::Config::test , which I dislike or import them as described in the previous
section. But hey, since we have only one variable to handle, we can make things even simpler and
save the loading of the Exporter.pm package. We will use the Perl aliasing feature for exporting
and saving the keystrokes:

 package My::HTML;
 use strict;
 use lib qw(.);
 # Global Configuration now aliased to global %c
 use My::Config (); # My/Config.pm in the same dir as script.pl
 use vars qw(%c);
 *c = \%My::Config::c;

 # Now you can access the variables from the My::Config
 print $c{scalar_val};
 print $c{array_val}[0];
 print $c{hash_val}{foo};

Of course $c is global everywhere you use it as described above, and if you change it somewhere it
will affect any other packages you have aliased $My::Config::c to.

Note that aliases work either with global or local() vars - you cannot write:

 my *c = \%My::Config::c;

Which is an error. But you can write:

 local *c = \%My::Config::c;

9510 May 2001

7.8.4 Using the Perl Aliasing Feature to Share Global Variablesmod_perl Tutorial: Perl Reference

For more information about aliasing, refer to the Camel book, second edition, pages 51-52.

7.9 The Scope of the Special Perl Vari ables
Special Perl variables like $| (buffering), $^T (time), $^W (warnings), $/ (input record separator),
$\ (output record separator) and many more are all global variables. This means that you cannot
scope them with my(). Only local() is permitted to do that. Since the child server doesn’t usually
exit, if in one of your scripts you modify a global variable it will be changed for the rest of the
process’ life and will affect all the scripts executed by the same process.

We will demonstrate the case on the input record separator variable. If you undefine this variable, a
diamond operator will suck in the whole file at once if you have enough memory. Remembering this
you should never write code like the example below.

 $/ = undef;
 open IN, "file"
 # slurp it all into a variable
 $all_the_file = <IN>;

The proper way is to have a local() keyword before the special variable is changed, like this:

 local $/ = undef;
 open IN, "file"
 # slurp it all inside a variable
 $all_the_file = <IN>;

But there is a catch. local() will propagate the changed value to any of the code below it. The
modified value will be in effect until the script terminates, unless it is changed again somewhere else
in the script.

A cleaner approach is to enclose the whole of the code that is affected by the modified variable in a
block, like this:

 {
 local $/ = undef;
 open IN, "file"
 # slurp it all inside a variable
 $all_the_file = <IN>;
 }

That way when Perl leaves the block it restores the original value of the $/ variable, and you don’t
need to worry elsewhere in your program about its value being changed here.

7.10 Compiled Regular Expressions
When using a regular expression that contains an interpolated Perl variable, if it is known that the vari-
able (or variables) will not change during the execution of the program, a standard optimization tech-
nique is to add the /o modifier to the regexp pattern. This directs the compiler to build the internal
table once, for the entire lifetime of the script, rather than every time the pattern is executed. Consider:

10 May 200196

Stas Bekman7.9 The Scope of the Special Perl Variables

 my $pat = ’^foo$’; # likely to be input from an HTML form field
 foreach(@list) {
 print if /$pat/o;
 }

This is usually a big win in loops over lists, or when using grep() or map() operators.

In long-lived mod_perl scripts, however, the variable can change according to the invocation and this
can pose a problem. The first invocation of a fresh httpd child will compile the regex and perform the
search correctly. However, all subsequent uses by that child will continue to match the original
pattern, regardless of the current contents of the Perl variables the pattern is supposed to depend on.
Your script will appear to be broken.

There are two solutions to this problem:

The first is to use eval q// , to force the code to be evaluated each time. Just make sure that the eval
block covers the entire loop of processing, and not just the pattern match itself.

The above code fragment would be rewritten as:

 my $pat = ’^foo$’;
 eval q{
 foreach(@list) {
 print if /$pat/o;
 }
 }

Just saying:

 foreach(@list) {
 eval q{ print if /$pat/o; };
 }

is going to be a horribly expensive proposition.

You can use this approach if you require more than one pattern match operator in a given section of
code. If the section contains only one operator (be it an m// or s///), you can rely on the property of
the null pattern, that reuses the last pattern seen. This leads to the second solution, which also elimi-
nates the use of eval.

The above code fragment becomes:

 my $pat = ’^foo$’;
 "something" =~ /$pat/; # dummy match (MUST NOT FAIL!)
 foreach(@list) {
 print if //;
 }

The only gotcha is that the dummy match that boots the regular expression engine must absolutely,
positively succeed, otherwise the pattern will not be cached, and the // will match everything. If you
can’t count on fixed text to ensure the match succeeds, you have two possibilities.

9710 May 2001

7.10 Compiled Regular Expressionsmod_perl Tutorial: Perl Reference

If you can guarantee that the pattern variable contains no meta-characters (things like *, +, ^, $...), you
can use the dummy match:

 "$pat" =~ /\Q$pat\E/; # guaranteed if no meta-characters present

If there is a possibility that the pattern can contain meta-characters, you should search for the pattern
or the non-searchable \377 character as follows:

 "\377" =~ /$pat|^\377$/; # guaranteed if meta-characters present

Another approach:

It depends on the complexity of the regexp to which you apply this technique. One common usage
where a compiled regexp is usually more efficient is to ‘‘ match any one of a group of patterns’’ over
and over again.

Maybe with a helper routine, it’s easier to remember. Here is one slightly modified from Jeffery
Friedl’s example in his book ‘‘ Mastering Regex’’.

 ###
 # Build_MatchMany_Function
 # -- Input: list of patterns
 # -- Output: A code ref which matches its $_[0]
 # against ANY of the patterns given in the
 # "Input", efficiently.
 #
 sub Build_MatchMany_Function {
 my @R = @_;
 my $expr = join ’||’, map { "\$_[0] =~ m/\$R[$_]/o" } (0..$#R);
 my $matchsub = eval "sub { $expr }";
 die "Failed in building regex @R: $@" if $@;
 $matchsub;
 }

Example usage:

 @some_browsers = qw(Mozilla Lynx MSIE AmigaVoyager lwp libwww);
 $Known_Browser=Build_MatchMany_Function(@some_browsers);

 while (<ACCESS_LOG>) {
 # ...
 $browser = get_browser_field($_);
 if (! &$Known_Browser($browser)) {
 print STDERR "Unknown Browser: $browser\n";
 }
 # ...
 }

10 May 200198

Stas Bekman7.10 Compiled Regular Expressions

7.11 Exception Handling for mod_perl
Provided here are some guidelines for clean(er) exception handling for mod_perl usage, although the
technique presented here applies to all of your Perl programming.

The reasoning behind this document is the current broken status of $SIG{__DIE__} in the perl core
- see both the perl5-porters and mod_perl mailing list archives for details on this discussion. (It’s
broken in at least Perl v5.6.0 and probably in later versions as well.)

7.11.1 Trapping Exceptions in Perl

To trap an exception in Perl we use the eval{} construct. Many people initially make the mistake
that this is the same as the eval EXPR construct, which compiles and executes code at run time, but
that’s not the case. eval{} compiles at compile time, just like the rest of your code, and has next to
zero run-time penalty.

When in an eval block, if the code executing die()’s for some reason, rather than terminating your
code, the exception is caught and the program is allowed to examine that exception and make deci-
sions based on it. The full construct looks like this:

 eval
 {
 # Some code here
 }; # Note important semi-colon there
 if ($@) # $@ contains the exception that was thrown
 {
 # Do something with the exception
 }
 else # optional
 {
 # No exception was thrown
 }

Most of the time when you see these exception handlers there is no else block, because it tends to be
OK if the code didn’t throw an exception.

7.11.2 Alternative Exception Handling Techniques

An often suggested method for handling global exceptions in mod_perl, and other perl programs in
general, is a __DIE__ handler, which can be setup by either assigning a function name as a string to
$SIG{__DIE__} (not particularly recommended, because of the possible namespace clashes) or
assigning a code reference to $SIG{__DIE__} , the usual way of doing so is to use an anonymous
subroutine:

 $SIG{__DIE__} = sub { print "Eek - we died with:\n", $_[0]; };

The current problem with this is that $SIG{__DIE__} is a global setting in your script, so while you
can potentially hide away your exceptions in some external module, the execution of
$SIG{__DIE__} is fairly magical, and interferes not just with your code, but with all code in every
module you import. Beyond the magic involved, $SIG{__DIE__} actually interferes with perl’s
normal exception handling mechanism, the eval{} construct. Witness:

9910 May 2001

7.11 Exception Handling for mod_perlmod_perl Tutorial: Perl Reference

 $SIG{__DIE__} = sub { print "handler\n"; };

 eval {
 print "In eval\n";
 die "Failed for some reason\n";
 };
 if ($@) {
 print "Caught exception: $@";
 }

The code unfortunately prints out:

 In eval
 handler

Which isn’t quite what you would expect, especially if that $SIG{__DIE__} handler is hidden away
deep in some other module that you didn’t know about. There are work arounds however. One is to
localise $SIG{__DIE__} in every exception trap you write:

 eval {
 local $SIG{__DIE__};
 ...
 };

Obviously this just doesn’t scale - you don’t want to be doing that for every exception trap in your
code, and it’s a slow down. A second work around is to check in your handler if you are trying to
catch this exception:

 $SIG{__DIE__} = sub {
 die $_[0] if $^S;
 print "handler\n";
 };

However this won’t work under Apache::Registry - you’re always in an eval block there!

You should warn people about this danger of $SIG{__DIE__} and inform them of better ways to
code. The following material is an attempt to just that.

7.11.3 Better Exception Handling

The eval{} construct in itself is a fairly weak way to handle exceptions as strings. There’s no way to
pass more information in your exception, so you have to handle your exception in more than one place
- at the location the error occurred, in order to construct a sensible error message, and again in your
exception handler to de-construct that string into something meaningful (unless of course all you want
your exception handler to do is dump the error to the browser).

A little known fact about exceptions in perl 5.005 is that you can call die with an object. The excep-
tion handler receives that object in $@. This is how you are advised to handle exceptions now, as it
provides an extremely flexible and scalable exceptions solution.

10 May 2001100

Stas Bekman7.11.3 Better Exception Handling

7.11.3.1 A Little Housekeeping

First though, before we delve into the details, a little housekeeping is in order. Most, if not all,
mod_perl programs consist of a main routine that is entered, and then dispatches itself to a routine
depending on the parameters passed and/or the form values. In a normal C program this is your
main() function, in a mod_perl handler this is your handler() function/method.

In order for you to be able to use exception handling to its best extent you need to change your script
to have some sort of global exception handling. This is much more trivial than it sounds. If you’re
using Apache::Registry to emulate CGI you might consider wrapping your entire script in one
big eval block, but I would discourage that. A better method would be to modularise your script into
discrete function calls, one of which should be a dispatch routine:

 #!/usr/bin/perl -w
 # Apache::Registry script

 eval {
 dispatch();
 };
 catch($@);

 sub dispatch {
 ...
 }

 sub catch {
 my $exception = shift;
 ...
 }

This is easier with an ordinary mod_perl handler as it is natural to have separate functions, rather than
a long run-on script:

 MyHandler.pm

 sub handler {
 my $r = shift;

 eval {
 dispatch($r);
 };
 catch ($@);
 }

 sub dispatch {
 my $r = shift;
 ...
 }

 sub catch {
 my $exception = shift;
 ...
 }

10110 May 2001

7.11.3 Better Exception Handlingmod_perl Tutorial: Perl Reference

Now that the skeleton code is setup, let’s create an exception class, making use of Perl 5.005’s ability
to throw exception objects.

7.11.3.2 An Exception Class

This is a really simple exception class, that does nothing but contain information. A better implemen-
tation would probably also handle its own exception conditions, but that would be more complex,
requiring separate packages for each exception type.

 My/Exception.pm

 package My::Exception;

 sub AUTOLOAD {
 my ($package, $filename, $line) = caller;
 no strict ’refs’, ’subs’;
 if ($AUTOLOAD =~ /.*::([A-Z]\w+)$/) {
 my $exception = $1;
 *{$AUTOLOAD} =
 sub {
 shift;
 push @_, caller => {
 package => $package,
 filename => $filename,
 line => $line,
 };
 bless { @_ }, "My::Exception::$exception";
 };
 goto &{$AUTOLOAD};
 }
 else {
 die "No such exception class: $AUTOLOAD\n";
 }
 }

 1;

OK, so this is all highly magical, but what does it do? It creates a simple package that we can import
and use as follows:

 use My::Exception;

 die My::Exception->SomeException(foo => "bar");

The exception class tracks exactly where we died from using the caller() mechanism, it also
caches exception classes so that AUTOLOAD is only called the first time (in a given process) an excep-
tion of a particular type is thrown (particularly relevant under mod_perl).

7.11.4 Catching Uncaught Exceptions

What about exceptions that are thrown outside of your control? We can fix this using one of two
possible methods. The first is to override die globally using the old magical $SIG{__DIE__} , and
the second, is the cleaner non-magical method of overriding the global die() method to your own
die() method that throws an exception that makes sense to your application.

10 May 2001102

Stas Bekman7.11.4 Catching Uncaught Exceptions

7.11.4.1 Using $SIG{__DIE__}

Overloading using $SIG{__DIE__} in this case is rather simple, here’s some code:

 $SIG{__DIE__} = sub {
 my $err = shift;
 if(!ref $err) {
 $err = My::Exception->UnCaught(text => $err);
 }
 die $err;
 };

All this does is catch your exception and re-throw it. It’s not as dangerous as we stated earlier that
$SIG{__DIE__} can be, because we’re actually re-throwing the exception, rather than catching it
and stopping there.

There’s only one slight buggette left, and that’s if some external code die()’ing catches the excep-
tion and tries to do string comparisons on the exception, as in:

 eval {
 ... # some code
 die "FATAL ERROR!\n";
 };
 if ($@) {
 if ($@ =~ /^FATAL ERROR/) {
 die $@;
 }
 }

In order to deal with this, we can overload stringification for our My::Excep tion ::UnCaught
class:

 {
 package My::Exception::UnCaught;
 use overload ’""’ => \&str;

 sub str {
 shift->{text};
 }
 }

We can now let other code happily continue.

7.11.4.2 Overrid ing the Core die() Function

So what if we don’t want to touch $SIG{__DIE__} at all? We can overcome this by overriding the
core die function. This is slightly more complex than implementing a $SIG{__DIE__} handler, but
is far less magical, and is the right thing to do, according to the perl5-porters mailing list.

Overriding core functions has to be done from an external package/module. So we’re going to add that
to our My::Excep tion module. Here’s the relevant parts:

10310 May 2001

7.11.4 Catching Uncaught Exceptionsmod_perl Tutorial: Perl Reference

 use vars qw/@ISA @EXPORT/;
 use Exporter;

 @EXPORT = qw/die/;
 @ISA = ’Exporter’;

 sub import {
 my $pkg = shift;
 $pkg->export(’CORE::GLOBAL’, ’die’);
 Exporter::import($pkg,@_);
 }

 sub die {
 if (!ref($_[0])) {
 CORE::die My::Exception->UnCaught(text => join(’’, @_));
 }
 CORE::die $_[0];
 }

That wasn’t so bad, was it? We’re relying on Exporter’s export function to do the hard work for us,
exporting the die() function into the CORE::GLOBAL namespace. Along with the above over-
loaded stringification, we now have a complete exception system (well, mostly complete. Exception
die-hards would argue that there’s no ‘‘finally’’ clause, and no exception stack, but that’s another
topic for another time).

7.11.5 Some Uses

I’m going to come right out and say now: I abuse this system horribly! I throw exceptions all over my
code, not because I’ve hit an exceptional bit of code, but because I want to get straight back out of the
current function, without having to have every single level of function call check error codes. One way
I use this is to return Apache return codes:

 # paranoid security check
 die My::Exception->RetCode(code => 204);

Returns a 204 error code (HTTP_NO_CONTENT), which is caught at my top level exception handler:

 if ($@->isa(’My::Exception::RetCode’)) {
 return $@->{code};
 }

That last return statement is in my handler() method, so that’s the return code that Apache actually
sends. I have other exception handlers in place for sending Basic Authentication headers and Redirect
headers out. I also have a generic My::Excep tion ::OK class, which gives me a way to back out
completely from where I am, but register that as an OK thing to do.

Why do I go to these extents? After all, code like slashcode (the code behind http://slashdot.org)
doesn’t need this sort of thing, so why should my web site? Well it’s just a matter of scalability and
programmer style really. There’s lots of literature out there about exception handling, so I suggest
doing some research.

10 May 2001104

Stas Bekman7.11.5 Some Uses

http://slashdot.org/

7.11.6 Conclusions

Here I’ve demonstrated a simple and scalable (and useful) exception handling mechanism, that fits
perfectly with your current code, and provides the programmer with excellent means to determine
what has happened in his code. Some users might be worried about the overhead of such code.
However in use I’ve found accessing the database to be a much more significant overhead, and this is
used in some code delivering to thousands of users.

For similar exception handling techniques, see the section ‘‘ Other Implementations’’.

7.11.7 The My::Exception class in its entirety

10510 May 2001

7.11.6 Conclusionsmod_perl Tutorial: Perl Reference

 package My::Exception

 use vars qw/@ISA @EXPORT $AUTOLOAD/;
 use Exporter;
 @ISA = ’Exporter’;
 @EXPORT = qw/die/;

 sub import {
 my $pkg = shift;
 $pkg->export(’CORE::GLOBAL’, ’die’);
 Exporter::import($pkg,@_);
 }

 sub die {
 if (!ref($_[0])) {
 CORE::die My::Exception->UnCaught(text => join(’’, @_));
 }
 CORE::die $_[0];
 }

 {
 package My::Exception::UnCaught;
 use overload ’""’ => \&str;

 sub str {
 shift->{text};
 }
 }

 sub AUTOLOAD {
 no strict ’refs’, ’subs’;
 if ($AUTOLOAD =~ /.*::([A-Z]\w+)$/) {
 my $exception = $1;
 *{$AUTOLOAD} =
 sub {
 shift;
 my ($package, $filename, $line) = caller;
 push @_, caller => {
 package => $package,
 filename => $filename,
 line => $line,
 };
 bless { @_ }, "My::Exception::$exception";
 };
 goto &{$AUTOLOAD};
 }
 else {
 die "No such exception class: $AUTOLOAD\n";
 }
 }

 1;

7.11.8 Other Implementations

Some users might find it very useful to have a more C++/Java like interface of try/catch functions.
These are available in several forms that all work in slightly different ways. See the documentation for
each module for details:

10 May 2001106

Stas Bekman7.11.8 Other Implementations

Error.pm

Graham Barr’s excellent OO styled ‘‘try, throw, catch’’ module (from CPAN).

Exception.pm and StackTrace.pm

by Autarch (from ftp://ftp.urth.org/pub/).

Excep tion a bit cleaner than the AUTOLOAD method from the above examples as it can
catch typos later on. Plus it lets you create actual class hierarchies for your exceptions, which
could be nice if you want to create exception classes that do more stuff and then inherit from
them.

Try.pm

Tony Olekshy’s. Adds an unwind stack. Not on CPAN (yet?).

Exceptions.pm

Peter Seibel’s Excep tions module is totally non-functional with modern Perl and has been
superseded by Graham Barr’s Error module.

;o)

10710 May 2001

7.11.8 Other Implementationsmod_perl Tutorial: Perl Reference

ftp://ftp.urth.org/pub/

8 Getting Help and Further Learning

10 May 2001108

Stas Bekman8 Getting Help and Further Learning

8.1 What we will learn in this chapter
Getting help

Get help with mod_perl

Get help with Perl

Get help with Perl/CGI

Get help with Apache

Get help with DBI

Get help with Squid

8.2 Getting help
If after reading this guide and other documents listed in this section, you feel that your question is not
yet answered, please ask the apache/mod_perl mailing list to help you. But first try to browse the
mailing list archive. Most of the time you will find the answer for your question by searching the
mailing archive, since there is a big chance someone else has already encountered the same problem
and found a solution for it. If you ignore this advice, do not be surprised if your question will be left
unanswered - it bores people to answer the same question more than once. It does not mean that you
should avoid asking questions. Just do not abuse the available help and RTFM before you call for
HELP . (You have certainly heard the infamous fable of the shepherd boy and the wolves)

8.3 Get help with mod_perl
mod_perl home

http://perl.apache.org

News and Resources

Take23: News and Resources for the mod_perl world http://take23.org

mod_perl Books

’Apache Modules’ Book

http://www.modperl.com is the home site of The Apache Modules Book, a book about creat-
ing Web server modules using the Apache API, written by Lincoln Stein and Doug
MacEachern.

Now you can purchase the book at your local bookstore or from the online dealer. O’Reilly
lists this book as:

10910 May 2001

8.1 What we will learn in this chaptermod_perl Tutorial: Getting Help and Further Learning

http://perl.apache.org/

http://take23.org/

http://www.modperl.com/

 Writing Apache Modules with Perl and C
 By Lincoln Stein & Doug MacEachern
 1st Edition March 1999
 1-56592-567-X, Order Number: 567X
 746 pages, $34.95

’Managing and Programming mod_perl’ Book

http://www.modperlbook.com is the home site of the new mod_perl book, that Eric Cholet
and Stas Bekman are co-authoring. We expect the book to be published in 2001.

Ideas, suggestions and comments are welcome. Please send them to info@modperlbook.com
.

mod_perl Quick Reference Card

mod_perl Pocket Reference by Andrew Ford was published by O’Reilly and Associates
http://www.oreilly.com/catalog/modperlpr/

You should probably get also the Apache Pocket Reference by the same author and the same
publisher: http://www.oreilly.com/catalog/apachepr/

See also Andrew’s collection of reference card for Apache and other programs:
http://www.refcards.com.

mod_perl Guide

by Stas Bekman at http://perl.apache.org/guide

mod_perl FAQ

by Frank Cringle at http://perl.apache.org/faq/ .

mod_perl performance tuning guide

by Vivek Khera at http://perl.apache.org/tuning/ .

mod_perl plugin reference guide

by Doug MacEachern at http://perl.apache.org/src/mod_perl.html .

Quick guide for moving from CGI to mod_perl

at http://perl.apache.org/dist/cgi_to_mod_perl.html .

mod_perl_traps, common traps and solutions for mod_perl users

at http://perl.apache.org/dist/mod_perl_traps.html .

mod_perl Resources Page

http://www.perlreference.com/mod_perl/

10 May 2001110

Stas Bekman8.3 Get help with mod_perl

http://www.modperlbook.com/

http://www.oreilly.com/catalog/modperlpr/

http://www.oreilly.com/catalog/apachepr/

http://www.refcards.com./

http://perl.apache.org/guide

http://perl.apache.org/faq/

http://perl.apache.org/tuning/

http://perl.apache.org/src/mod_perl.html

http://perl.apache.org/dist/cgi_to_mod_perl.html

http://perl.apache.org/dist/mod_perl_traps.html

http://www.perlreference.com/mod_perl/

mod_perl mailing list

The Apache/Perl mailing list (modperl@apache.org) is available for mod_perl users and devel-
opers to share ideas, solve problems and discuss things related to mod_perl and the
Apache::* modules. To subscribe to this list, send mail to modperl-subscribe@apache.org with
empty Subject and with Body :

 subscribe modperl

A searchable mod_perl mailing list archive available at http://forum.swarth-
more.edu/epigone/modperl . We owe it to Ken Williams.

More archives available:

http://www.geocrawler.com/lists/3/web/182/0/

http://www.bitmechanic.com/mail-archives/modperl/

http://www.mail-archive.com/modperl%40apache.org/

http://www.davin.ottawa.on.ca/archive/modperl/

http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl

http://www.egroups.com/group/modperl/

8.4 Get help with Perl
The Perl FAQ

http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html

The Perl home

http://www.perl.com/

The Perl Journal

http://www.tpj.com/

11110 May 2001

8.4 Get help with Perlmod_perl Tutorial: Getting Help and Further Learning

http://forum.swarthmore.edu/epigone/modperl

http://forum.swarthmore.edu/epigone/modperl

http://www.geocrawler.com/lists/3/web/182/0/

http://www.bitmechanic.com/mail-archives/modperl/

http://www.mail-archive.com/modperl%40apache.org/

http://www.davin.ottawa.on.ca/archive/modperl/

http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl

http://www.egroups.com/group/modperl/

http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html

http://www.perl.com/

http://www.tpj.com/

Perl Module Mechanics

http://world.std.com/~swmcd/steven/perl/module_mechanics.html - This page describes the
mechanics of creating, compiling, releasing and maintaining Perl modules.

8.5 Get help with Perl/CGI
Perl/CGI FAQ

at http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

Answers to some bothering Perl and Perl/CGI questions

http://stason.org/TULARC/webmaster/myfaq.html

Idiot’s Guide to CGI programming

http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html

WWW Security FAQ

http://www.w3.org/Security/Faq/www-security-faq.html

CGI/Perl Taint Mode FAQ

http://www.gunther.web66.com/FAQS/taintmode.html (by Gunther Birznieks)

8.6 Get help with Apache
Apache Project’s Home

http://www.apache.org

Apache Quick Reference Card

http://www.refcards.com (Apache and other refcards are available from this link)

The Apache FAQ

http://www.apache.org/docs/misc/FAQ.html

Apache Server Documentation

http://www.apache.org/docs/

Apache Handlers

http://www.apache.org/docs/handler.html

mod_rewrite Guide

10 May 2001112

Stas Bekman8.5 Get help with Perl/CGI

http://world.std.com/~swmcd/steven/perl/module_mechanics.html

http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

http://stason.org/TULARC/webmaster/myfaq.html

http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html

http://www.w3.org/Security/Faq/www-security-faq.html

http://www.gunther.web66.com/FAQS/taintmode.html

http://www.apache.org/

http://www.refcards.com/

http://www.apache.org/docs/misc/FAQ.html

http://www.apache.org/docs/

http://www.apache.org/docs/handler.html

http://www.engelschall.com/pw/apache/rewriteguide/

8.7 Get help with DBI
Perl DBI examples

http://www.saturn5.com/~jwb/dbi-examples.html (by Jeffrey William Baker).

DBI Homepage

http://www.symbolstone.org/technology/perl/DBI/

DBI mailing list infor mation

http://www.fugue.com/dbi/

DBI mailing list archives

http://outside.organic.com/mail-archives/dbi-users/
http://www.xray.mpe.mpg.de/mailing-lists/dbi/

Persistent connections with mod_perl

http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS

8.8 Get help with Squid - Inter net Object Cache

Home page - http://squid.nlanr.net/

FAQ - http://squid.nlanr.net/Squid/FAQ/FAQ.html

Users Guide - http://squid.nlanr.net/Squid/Users-Guide/

Mailing lists - http://squid.nlanr.net/Squid/mailing-lists.html

;o)

11310 May 2001

8.7 Get help with DBImod_perl Tutorial: Getting Help and Further Learning

http://www.engelschall.com/pw/apache/rewriteguide/

http://www.saturn5.com/~jwb/dbi-examples.html

http://www.symbolstone.org/technology/perl/DBI/

http://www.fugue.com/dbi/

http://outside.organic.com/mail-archives/dbi-users/

http://www.xray.mpe.mpg.de/mailing-lists/dbi/

http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS

http://squid.nlanr.net/

http://squid.nlanr.net/Squid/FAQ/FAQ.html

http://squid.nlanr.net/Squid/Users-Guide/

http://squid.nlanr.net/Squid/mailing-lists.html

Table of Contents:
............ 1Tutorial: Getting started with mod_perl
............... 3mod_perl Tutorial: Agenda
.................. 31 Agenda
.................. 41.1 Agenda
............ 5mod_perl Tutorial: Getting Started Fast
................ 52 Getting Started Fast
.............. 62.1 mod_perl in Four Slides
............... 62.2 What is mod_perl?
................. 72.3 Installation
................ 82.4 Configuration
......... 82.5 The "mod_perl rules" Apache::Registry Scripts
.......... 92.6 The "mod_perl rules" Apache Perl Module
......... 92.7 Is That All I Need To Know About mod_perl?
........... 11mod_perl Tutorial: Server Setup Strategies
............... 113 Server Setup Strategies
............ 123.1 What we will learn in this chapter
............ 123.2 mod_perl Deployment Overview
......... 123.3 Standalone mod_perl Enabled Apache Server
..... 143.4 One Plain Apache and One mod_perl-enabled Apache Servers
......... 153.5 Adding a Proxy Server in http Accelerator Mode
............ 173.6 Implementations of Proxy Servers
.............. 173.6.1 The Squid Server
.............. 183.6.2 Apache’s mod_proxy
.. 20mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines.
....... 204 Porting from CGI Scripts and mod_perl Coding Guidelines.
............ 214.1 What we will learn in this chapter
............ 214.2 Exposing Apache::Registry secrets
.............. 224.2.1 The First Mystery
.............. 254.2.2 The Second Mystery
.......... 264.3 Sometimes it Works, Sometimes it Doesn’t
............ 264.3.1 Regular Expression Memory
............... 264.4 @INC and mod_perl
........... 274.5 Reloading Modules and Required Files
.............. 274.5.1 Restarting the server
....... 274.5.2 Using Apache::StatINC for the Development Process
............. 294.5.3 Using Apache::Reload
................ 304.5.3.1 Caveats
............ 304.6 __END__ and __DATA__ tokens
.............. 314.7 Output from system calls
........... 314.8 Terminating requests and processes
............... 334.9 die() and mod_perl
............. 334.10 Global Variables Persistance
........... 334.11 Command line Switches (-w, -T, etc)
................ 344.11.1 Warnings
............... 354.11.2 Taint Mode
............... 354.11.3 Other switches
........... 37mod_perl Tutorial: RDBMS and mod_perl
............... 375 RDBMS and mod_perl

i10 May 2001

....... 385.1 Apache::DBI - Initiate a persistent database connection

................ 385.1.1 Introduction

............... 395.1.2 Configuration

............ 395.1.3 Preopening DBI connections

............. 395.1.4 Debugging Apache::DBI

........ 405.1.5 Opening connections with different parameters

............ 405.1.6 Caching prepare() Statements

............ 41mod_perl Tutorial: Performance Tuning

............... 416 Performance Tuning

............ 426.1 What we will learn in this chapter

................ 426.2 The Big Picture

................ 436.3 Essential Tools

............. 436.3.1 Benchmarking Perl Code

........... 446.3.2 Benchmarking Response Times

.............. 446.3.2.1 ApacheBench

................ 456.3.2.2 httperf

........... 456.3.3 Using LWP::Parallel::UserAgent

.............. 496.4 Choosing MaxClients

................. 516.5 KeepAlive

............ 526.6 Be carefull with symbolic links

............ 526.7 Limit ing the Size of the Processes

................ 536.8 Sharing Memory

............. 536.9 How Shared My Memory Is

........... 546.10 Keeping the Shared Memory Limit

........... 546.11 Preload Perl modules at server startup

........... 556.11.0.0.1 Modules Initialization

.............. 596.12 Preload Registry Scripts

............ 596.13 Upload/Download of Big Files

........... 606.14 Global vs Fully Qualified Variables

........ 606.15 Forking or Executing subprocesses from mod_perl

............ 626.15.1 Freeing the Parent Process

........... 636.15.2 Detaching the Forked Process

............ 636.15.3 Avoiding Zombie Processes

............ 656.15.4 A Complete Fork Example

......... 676.16 Sending plain HTML as a compressed output

............. 69mod_perl Tutorial: Perl Reference

................. 697 Perl Reference

............ 707.1 What we will learn in this chapter

........ 707.2 perldoc’s Rarely Known But Very Useful Options

............. 717.3 Tracing Warnings Reports

...... 737.4 Variables Globally, Lexically Scoped And Fully Qualified

......... 747.5 my() Scoped Variable in Nested Subroutines

................ 747.5.1 The Poison

............... 757.5.2 The Diagnosis

................ 767.5.3 The Remedy

........ 777.6 When You Cannot Get Rid of The Inner Subroutine

........... 797.6.1 Remedies for Inner Subroutines

........ 857.7 use(), require(), do(), %INC and @INC Explained

............... 857.7.1 The @INC array

............... 857.7.2 The %INC hash

10 May 2001ii

............ 877.7.3 Modules, Libraries and Files

................ 887.7.4 require()

................. 907.7.5 use()

................. 917.7.6 do()

... 927.8 Using Global Variables and Sharing Them Between Modules/Packages

............. 927.8.1 Making Variables Global

........ 927.8.2 Making Variables Global With strict Pragma On

........ 927.8.3 Using Exporter.pm to Share Global Variables

..... 947.8.4 Using the Perl Aliasing Feature to Share Global Variables

.......... 967.9 The Scope of the Special Perl Variables

............ 967.10 Compiled Regular Expressions

............ 997.11 Exception Handling for mod_perl

............ 997.11.1 Trapping Exceptions in Perl

........ 997.11.2 Alternative Exception Handling Techniques

............ 1007.11.3 Better Exception Handling

............ 1017.11.3.1 A Little Housekeeping

............. 1027.11.3.2 An Exception Class

........... 1027.11.4 Catching Uncaught Exceptions

............ 1037.11.4.1 Using $SIG{__DIE__}

......... 1037.11.4.2 Overriding the Core die() Function

................ 1047.11.5 Some Uses

............... 1057.11.6 Conclusions

......... 1057.11.7 The My::Exception class in its entirety

............. 1067.11.8 Other Implementations

........ 108mod_perl Tutorial: Getting Help and Further Learning

............ 1088 Getting Help and Further Learning

............ 1098.1 What we will learn in this chapter

................. 1098.2 Getting help

.............. 1098.3 Get help with mod_perl

............... 1118.4 Get help with Perl

.............. 1128.5 Get help with Perl/CGI

.............. 1128.6 Get help with Apache

............... 1138.7 Get help with DBI

.......... 1138.8 Get help with Squid - Internet Object Cache

iii10 May 2001

		1€€Agenda

		1.1€€Agenda

		2€€Getting Started Fast

		2.1€€mod_perl in Four Slides

		2.2€€What is mod_perl?

		2.3€€Installation

		2.4€€Configuration

		2.5€€The "mod_perl rules" Apache::Registry Scripts

		2.6€€The "mod_perl rules" Apache Perl Module

		2.7€€Is That All I Need To Know About mod_perl?

		3€€Server Setup Strategies

		3.1€€What we will learn in this chapter

		3.2€€mod_perl Deployment Overview

		3.3€€Standalone mod_perl Enabled Apache Server

		3.4€€One Plain Apache and One mod_perl-enabled Apache Servers

		3.5€€Adding a Proxy Server in http Accelerator Mode

		3.6€€Implementations of Proxy Servers

		3.6.1€€The Squid Server

		3.6.2€€Apache's mod_proxy

		4€€Porting from CGI Scripts and mod_perl Coding Guidelines.

		4.1€€What we will learn in this chapter

		4.2€€Exposing Apache::Registry secrets

		4.2.1€€The First Mystery

		4.2.2€€The Second Mystery

		4.3€€Sometimes it Works, Sometimes it Doesn't

		4.3.1€€Regular Expression Memory

		4.4€€@INC and mod_perl

		4.5€€Reloading Modules and Required Files

		4.5.1€€Restarting the server

		4.5.2€€Using Apache::StatINC for the Development Process

		4.5.3€€Using Apache::Reload

		4.5.3.1€€Caveats

		4.6€€__END__ and __DATA__ tokens

		4.7€€Output from system calls

		4.8€€Terminating requests and processes

		4.9€€die†‡ and mod_perl

		4.10€€Global Variables Persistance

		4.11€€Command line Switches †-w, -T, etc‡

		4.11.1€€Warnings

		4.11.2€€Taint Mode

		4.11.3€€Other switches

		5€€RDBMS and mod_perl

		5.1€€Apache::DBI - Initiate a persistent database connection

		5.1.1€€Introduction

		5.1.2€€Configuration

		5.1.3€€Preopening DBI connections

		5.1.4€€Debugging Apache::DBI

		5.1.5€€Opening connections with different parameters

		5.1.6€€Caching prepare†‡ Statements

		6€€Performance Tuning

		6.1€€What we will learn in this chapter

		6.2€€The Big Picture

		6.3€€Essential Tools

		6.3.1€€Benchmarking Perl Code

		6.3.2€€Benchmarking Response Times

		6.3.2.1€€ApacheBench

		6.3.2.2€€httperf

		6.3.3€€Using LWP::Parallel::UserAgent

		6.4€€Choosing MaxClients

		6.5€€KeepAlive

		6.6€€Be carefull with symbolic links

		6.7€€Limiting the Size of the Processes

		6.8€€Sharing Memory

		6.9€€How Shared My Memory Is

		6.10€€Keeping the Shared Memory Limit

		6.11€€Preload Perl modules at server startup

		

		

		6.11.0.0.1€€Modules Initialization

		6.12€€Preload Registry Scripts

		6.13€€Upload/Download of Big Files

		6.14€€Global vs Fully Qualified Variables

		6.15€€Forking or Executing subprocesses from mod_perl

		6.15.1€€Freeing the Parent Process

		6.15.2€€Detaching the Forked Process

		6.15.3€€Avoiding Zombie Processes

		6.15.4€€A Complete Fork Example

		6.16€€Sending plain HTML as a compressed output

		7€€Perl Reference

		7.1€€What we will learn in this chapter

		7.2€€perldoc's Rarely Known But Very Useful Options

		7.3€€Tracing Warnings Reports

		7.4€€Variables Globally, Lexically Scoped And Fully Qualified

		7.5€€my†‡ Scoped Variable in Nested Subroutines

		7.5.1€€The Poison

		7.5.2€€The Diagnosis

		7.5.3€€The Remedy

		7.6€€When You Cannot Get Rid of The Inner Subroutine

		7.6.1€€Remedies for Inner Subroutines

		7.7€€use†‡, require†‡, do†‡, %INC and @INC Explained

		7.7.1€€The @INC array

		7.7.2€€The %INC hash

		7.7.3€€Modules, Libraries and Files

		7.7.4€€require†‡

		7.7.5€€use†‡

		7.7.6€€do†‡

		7.8€€Using Global Variables and Sharing Them Between Modules/Packages

		7.8.1€€Making Variables Global

		7.8.2€€Making Variables Global With strict Pragma On

		7.8.3€€Using Exporter.pm to Share Global Variables

		7.8.4€€Using the Perl Aliasing Feature to Share Global Variables

		7.9€€The Scope of the Special Perl Variables

		7.10€€Compiled Regular Expressions

		7.11€€Exception Handling for mod_perl

		7.11.1€€Trapping Exceptions in Perl

		7.11.2€€Alternative Exception Handling Techniques

		7.11.3€€Better Exception Handling

		7.11.3.1€€A Little Housekeeping

		7.11.3.2€€An Exception Class

		7.11.4€€Catching Uncaught Exceptions

		7.11.4.1€€Using $SIG{__DIE__}

		7.11.4.2€€Overriding the Core die†‡ Function

		7.11.5€€Some Uses

		7.11.6€€Conclusions

		7.11.7€€The My::Exception class in its entirety

		7.11.8€€Other Implementations

		8€€Getting Help and Further Learning

		8.1€€What we will learn in this chapter

		8.2€€Getting help

		8.3€€Get help with mod_perl

		8.4€€Get help with Perl

		8.5€€Get help with Perl/CGI

		8.6€€Get help with Apache

		8.7€€Get help with DBI

		8.8€€Get help with Squid - Internet Object Cache

