

Presentation Handouts: mod_perl 2.0, the Next Generation

by Stas Bekman
http://stason.org/

<stas@stason.org>
TicketMaster

ApacheCon US 2002
Monday, Nov 20 2002

Las Vegas, Nevada, USA

This talk is available from: http://stason.org/talks/

Last modified Sun Nov 17 06:15:58 2002 GMT

116 Nov 2002

Table of Contents:Presentation Handouts: mod_perl 2.0, the Next Generation

1�� The Next Generation: mod_perl 2.0

16 Nov 20022

Stas Bekman1��The Next Generation: mod_perl 2.0

1.1��About
1. What’s new in Apache 2.0

2. What’s new in Perl 5.6.0 - 5.8.0

3. What’s new in mod_perl 2.0

4. Installing mod_perl 2.0

5. Configuring mod_perl 2.0

6. Working Examples

7. Migrating from 1.x to 2.0

1.2��Thank you!
* TicketMaster rules!!!

1.3��Versioning Convention
Here and in the rest of this document we refer to mod_perl 1.x series as mod_perl 1.0 and, 2.0.x as
mod_perl 2.0 to keep things simple. Similarly we call Apache 1.3.x series as Apache 1.3 and 2.0.x as
Apache 2.0

1.4��Why mod_perl, the Next Generation
Since Doug MacEachern has introduced mod_perl 1.0 in 1996, he had to adjust source code to the many
changes Apache and Perl went through, while staying compatible with the older versions, leading to a very
complex source code, with hundreds of #ifdefs and workarounds for various incompatibilities in older
Perl and Apache versions. When Apache 2.0 development was underway, the new threads design was
introduced, which couldn’t be supported by the existing Perl version, since it required thread-safe Perl
interpreters.

316 Nov 2002

1.1��AboutThe Next Generation: mod_perl 2.0

Think of it as a conspiracy or just a lucky coincidence, on March 10, 2002, the first Apache 2.0 alpha
version was released. 13 days later, on March 23, 2002, Perl 5.6.0 has been released. And guess what, Perl
5.6.0 was the first Perl version to support the internal thread-safeness across multiple interpreters.

Since Perl 5.6.0 and Apache 2.0 were the very minimum requirements there was no need to support older
version and it was a great idea to start mod_perl 2.0 code base from scratch, incorporating the lessons
learned during the 5 years of mod_perl’s existence.

The new version includes a mechanism for an automatic building of the Perl interface to Apache API,
which allowed us to easily adjust mod_perl 2.0 to ever changing Apache 2.0 API, during its development
period.

There are multiple other interesting changes that have already happened to mod_perl in version 2.0 and
more will be developed in the future. Some of these will be covered in this document and some you will
discover on your own while reading mod_perl documentation.

1.4.1��The Apache::Test Framework

Another important new feature is the Apache::Test framework, which was originally developed for
mod_perl 2.0, but then was adopted by Apache 2.0 developers to test the core server features and third
party modules. Moreover the tests written using the Apache::Test framework could be run with
Apache 1.0 and 2.0, assuming that both supported the same features.

1.5��What’s new in Apache 2.0
Apache 2.0 has introduces numerous new features and enhancements. Here are the most important new
features:

Apache Portable Runtime (APR)

The APR presents a standard API for server applications, covering file I/O, logging, shared memory,
threads, managing child processes and many other functionalities needed for developing the Apache
core and third party modules in a portable and effective way. One of the important effects is that it
significantly simplifies the code that uses the APR making it much easier to review and understand
the Apache code, increasing the number of revealed bugs and contributed patches.

The APR uses the concept of memory pools, which significantly simplifies the memory management
code and reduces the possibility of having memory leaks, which always haunt C programmers.

Multi Processing Model modules (MPMs).

In the previous Apache generation the same code base was trying to handle a management of incom-
ing requests for different platforms, which lead to scalability problems on certain platforms, mainly
on those which are different from Unix. This also lead to an undesired complexity of the code.

16 Nov 20024

Stas Bekman1.5��What’s new in Apache 2.0

Apache 2.0 introduces the concept of Multi Processing Model modules, whose main responsibility is
to map the incoming requests to either threads, processes or a threads/processes hybrid. Now it’s
possible to write different processing modules specific to various platforms. For example the Apache
2.0 on Windows is much more efficient now, since it uses mpm_winnt which deploys the native
Windows features.

Here is a partial list of major MPMs available as of this writing.

prefork

The prefork MPM emulates Apache 1.3’s preforking model, where each request is handled by a
different forked child process.

worker

The worker MPM implements a hybrid multi-process multi-threaded approach based on the
pthreads standard. It uses one acceptor thread, multiple worker threads.

mpmt_os2, netware, winnt and beos

These MPMs also implement the hybrid multi-process/multi-threaded model, with each based
on native OS thread implementations.

On platforms that support more than one MPM, it’s possible to switch the used MPMs as the need
change. For example on Unix it’s possible to start with a preforked module. Then when the demand is
growing and the code matures, it’s possible to migrate to a more efficient threaded MPM, assuming
that the code base is capable of running in the threaded environment.

The following diagram depicts the Apache 2.0 server life cycle and highlights which handlers are
available to mod_perl 2.0:

516 Nov 2002

1.5��What’s new in Apache 2.0The Next Generation: mod_perl 2.0

The spawned processes and threads that serve the requests depend on the chosen MPM.

Protocol Modules

The previous Apache generation could speak only the HTTP protocol. Apache 2.0 has introduced a
"server framework" architecture making it possible to plug in handlers for protocols other than
HTTP. The protocol module design also abstracts the transport layer so protocols such as SSL can be
hooked into the server without requiring modifications to the Apache source code. This allows
Apache to be extended much further than in the past, making it possible to add support for protocols
such as FTP, SMTP, RPC flavors and the like. The main advantage being that protocol plugins can
take advantage of Apache’s portability, process/thread management, configuration mechanism and
plugin API.

16 Nov 20026

Stas Bekman1.5��What’s new in Apache 2.0

The following diagram depicts the connection life cycle and highlights which handlers are available
to mod_perl 2.0:

The protocol modules are plugged in the PreConnection and ProcessConnection stages.

I/O Filtering

Apache 2.0 allows multiple modules to filter both the request and the response. Now one module can
pipe its output as an input to another module as if another module was receiving the data directly
from the TCP stream. The same mechanism works with the generated response.

With I/O filtering in place, things like SSL, data (de-)compression and other manipulations are done
very easily.

The following diagram depicts the HTTP request life cycle and highlights which handlers are avail-
able to mod_perl 2.0:

716 Nov 2002

1.5��What’s new in Apache 2.0The Next Generation: mod_perl 2.0

The I/O filtering is added to the response phase.

The I/O filtering is based on the concept of bucket brigades and implemented in the APR.

The following figure depicts an imaginary bucket brigade:

16 Nov 20028

Stas Bekman1.5��What’s new in Apache 2.0

The figure tries to show that after the presented bucket brigade has passed through several filters
some buckets were removed, some modified and some added. Of course the handler that gets the
brigade cannot tell the history of the brigade, it can only see the existing buckets in the brigade.

New Hook Scheme

In Apache 2.0 it’s possible to dynamically register functions for each Apache hook, and allows more
than one function to be registered per hook. Moreover when adding new functions, it’s possible to
specify where the new function should be added, e.g. a function can be pushed between two already
registered functions or in front of them.

Parsed Configuration Tree

Apache 2.0 makes the parsed configuration tree available at run time, so modules needing to read the
configuration data (e.g., mod_info) don’t have to re-parse the configuration file, but can re-use the
parsed tree.

All these new features boost the Apache performance, scalability and flexibility. The APR helps the
overall performance by doing lots of platform specific optimizations in the APR internals, and giving the
developer the API which was already greatly optimized.

916 Nov 2002

1.5��What’s new in Apache 2.0The Next Generation: mod_perl 2.0

Apache 2.0 now includes special modules that can boost performance. For example the mod_mmap_static
module loads webpages into the virtual memory and serves them directly avoiding the overhead of open()
and read() system calls to pull them in from the filesystem.

The I/O layering is helping performance too, since now modules don’t need to waste memory and CPU
cycles to manually store the data in shared memory or pnotes in order to pass the data to another module,
e.g., in order to provide response’s gzip compression.

And of course a not least important impact of these features is the simplification and added flexibility for
the core and third party Apache module developers.

1.6��What’s new in Perl 5.6.0 - 5.8.0
As we have mentioned earlier Perl 5.6.0 is the minimum requirement for mod_perl 2.0. Though as we will
see later certain new features work only with Perl 5.8.0 and higher.

These are the important changes in the recent Perl versions that had an impact on mod_perl. For a
complete list of changes see the corresponding to the used version perldelta manpage.

The 5.6 Perl generation has introduced the following features:

The beginnings of support for running multiple interpreters concurrently in different threads. In
conjunction with the perl_clone() API call, which can be used to selectively duplicate the state of any
given interpreter, it is possible to compile a piece of code once in an interpreter, clone that interpreter
one or more times, and run all the resulting interpreters in distinct threads. See the perlembed and
perl561delta manpages.

The core support for declaring subroutine attributes, which is used by mod_perl 2.0’s method
handlers. See the attributes manpage.

The warnings pragma, which allows to force the code to be super clean, via the setting:

 use warnings FATAL => ’all’;

which will abort any code that generates warnings. This pragma also allows a fine control over what
warnings should be reported. See the perllexwarn manpage.

Certain CORE:: functions now can be overridden via CORE::GLOBAL:: namespace. For example
mod_perl now can override CORE::exit() via CORE::GLOBAL::exit. See the perlsub
manpage.

The XSLoader extension as a simpler alternative to DynaLoader. See the XSLoader manpage.

The large file support. If you have filesystems that support "large files" (files larger than 2 gigabytes),
you may now also be able to create and access them from Perl. See the perl561delta manpage.

16 Nov 200210

Stas Bekman1.6��What’s new in Perl 5.6.0 - 5.8.0

Multiple performance enhancements were made. See the perl561delta manpage.

Numerous memory leaks were fixed. See the perl561delta manpage.

Improved security features: more potentially unsafe operations taint their results for improved secu-
rity. See the perlsec and perl561delta manpages.

Available on new platforms: GNU/Hurd, Rhapsody/Darwin, EPOC.

Overall multiple bugs and problems very fixed in the Perl 5.6.1, so if you plan on running the 5.6 genera-
tion, you should run at least 5.6.1. It is possible that when this book is released 5.6.2 will be out.

The Perl 5.8.0 has introduced the following features:

The introduced in 5.6.0 experimental PerlIO layer has been stabilized and become the default IO
layer in 5.8.0. Now the IO stream can be filtered through multiple layers. See the perlapio and perliol
manpages.

For example this allows mod_perl to inter-operate with the APR IO layer and even use the APR IO
layer in Perl code. See the APR::PerlIO manpage.

Another example of using the new feature is the extension of the open() functionality to create anony-
mous temporary files via:

 open my $fh, "+>", undef or die $!;

That is a literal undef(), not an undefined value. See the open() entry in the perlfunc manpage.

More overridable via CORE::GLOBAL:: keywords. See the perlsub manpage.

The signal handling in Perl has been notoriously unsafe because signals have been able to arrive at
inopportune moments leaving Perl in inconsistent state. Now Perl delays signal handling until it is
safe.

File::Temp was added to allow a creation of temporary files and directories in an easy, portable,
and secure way. See the File::Temp manpage.

A new command-line option, -t is available. It is the little brother of -T: instead of dying on taint
violations, lexical warnings are given. This is only meant as a temporary debugging aid while secur-
ing the code of old legacy applications. This is not a substitute for -T. See the perlrun manpage.

A new special variable ${^TAINT} was introduced. It indicates whether taint mode is enabled. See
the perlvar manpage.

Threads implementation is much improved since 5.6.

A much better support for Unicode.

1116 Nov 2002

1.6��What’s new in Perl 5.6.0 - 5.8.0The Next Generation: mod_perl 2.0

Numerous bugs and memory leaks fixed. For example now you can localize the tied Apache::DBI
filehandles without leaking memory.

Available on new platforms: AtheOS, Mac OS Classic, Mac OS X, MinGW, NCR MP-RAS,
NonStop-UX, NetWare and UTS. The following platforms are again supported: BeOS, DYNIX/ptx,
POSIX-BC, VM/ESA, z/OS (OS/390).

1.7��What’s new in mod_perl 2.0
The new features introduced by Apache 2.0 and Perl 5.6 and 5.8 generations provide the base of the new
mod_perl 2.0 features. In addition mod_perl 2.0 re-implements itself from scratch providing such new
features as new build and testing framework. Let’s look at the major changes since mod_perl 1.0.

1.7.1��Threads Support

In order to adapt to the Apache 2.0 threads architecture (for threaded MPMs), mod_perl 2.0 needs to use
thread-safe Perl interpreters, also known as "ithreads" (Interpreter Threads). This mechanism can be
enabled at compile time and ensures that each Perl interpreter uses its private PerlInterpreter struc-
ture for storing its symbol tables, stacks and other Perl runtime mechanisms. When this separation is
engaged any number of threads in the same process can safely perform concurrent callbacks into Perl. This
of course requires each thread to have its own PerlInterpreter object, or at least that each instance
is only accessed by one thread at any given time.

The first mod_perl generation has only a single PerlInterpreter, which is constructed by the parent
process, then inherited across the forks to child processes. mod_perl 2.0 has a configurable number of
PerlInterpreters and two classes of interpreters, parent and clone. A parent is like that in mod_perl
1.0, where the main interpreter created at startup time compiles any pre-loaded Perl code. A clone is
created from the parent using the Perl API perl_clone() function. At request time, parent interpreters are
only used for making more clones, as the clones are the interpreters which actually handle requests. Care
is taken by Perl to copy only mutable data, which means that no runtime locking is required and read-only
data such as the syntax tree is shared from the parent, which should reduce the overall mod_perl memory
footprint.

Rather than create a PerlInterperter per-thread by default, mod_perl creates a pool of interpreters.
The pool mechanism helps cut down memory usage a great deal. As already mentioned, the syntax tree is
shared between all cloned interpreters. If your server is serving more than mod_perl requests, having a
smaller number of PerlInterpreters than the number of threads will clearly cut down on memory usage.
Finally and perhaps the biggest win is memory re-use: as calls are made into Perl subroutines, memory
allocations are made for variables when they are used for the first time. Subsequent use of variables may
allocate more memory, e.g. if a scalar variable needs to hold a longer string than it did before, or an array
has new elements added. As an optimization, Perl hangs onto these allocations, even though their values
"go out of scope". mod_perl 2.0 has a much better control over which PerlInterpreters are used for incom-
ing requests. The interpreters are stored in two linked lists, one for available interpreters and another for
busy ones. When needed to handle a request, one interpreter is taken from the head of the available list and
put back into the head of the same list when done. This means if for example you have 10 interpreters
configured to be cloned at startup time, but no more than 5 are ever used concurrently, those 5 continue to

16 Nov 200212

Stas Bekman1.7��What’s new in mod_perl 2.0

reuse Perl’s allocations, while the other 5 remain much smaller, but ready to go if the need arises.

The interpreters pool mechanism has been abstracted into an API known as "tipool", Thread Item Pool.
This pool can be used to manage any data structure, in which you wish to have a smaller number than the
number of configured threads. For example a replacement for Apache::DBI based on the tipool will
allow to reuse database connections between multiple threads of the same process.

1.7.2��Thread-safety

It’s important to notice that the Perl "ithreads" implementation ensures that Perl code is thread safe, at
least with respect to the Apache threads in which it is running. However, it does not ensure that extensions
which call into third-party C/C++ libraries are thread safe. For example the function localtime() is
not thread-safe when the implementation of asctime(3) is not thread-safe. Other usually problematic func-
tions include readdir(), srand(), etc. In the case of non-thread-safe extensions, if it is not possible to fix
those routines, care needs to be taken to serialize calls into such functions (either at the XS or Perl level).
See the perlthrtut manpage.

Another important issue that shouldn’t be missed is what some people refer to as thread-locality. Certain
functions executed in a single thread affect the whole process and therefore all other threads running
inside that process. For example if you chdir() in one thread, all other thread now see the current
working directory of that thread that chdir()’ed to that directory. Other functions with similar effects
include umask(), chroot(), etc. Currently there is no cure for this problem. You have to find these
functions in your code and replace them with different workarounds.

1.7.3��Perl interface to the APR and Apache APIs

As we have mentioned earlier, Apache 2.0 uses two APIs:

the Apache Portable APR (APR) API, which implements a portable and efficient API to handle
generically work with files, threads, processes, shared memory, etc.

the Apache API, which handles issues specific to the web server.

mod_perl 2.0 provides its own very flexible special purpose XS code generator, which is capable of doing
things none of the existing generators can handle. It’s possible that in the future this generator will be
generalized and used for other projects of a high complexity.

This generator creates the Perl glue code for the public APR and Apache API, almost without a need for
any extra code, but a few thin wrappers to make the API more Perlish.

In particular, since APR can be used outside of Apache, the Perl APR:: modules can be used outside of
Apache as well.

1316 Nov 2002

1.7.2��Thread-safetyThe Next Generation: mod_perl 2.0

1.7.4��Other New Features

In addition to the already mentioned new features, the following are of a major importance:

Apache 2.0 protocol modules are supported. Later we will see an example of a protocol module
running on top of mod_perl 2.0.

mod_perl 2.0 provides a very simply to use interface to the Apache filtering API. We will present a
filter module example later on.

A feature-full and flexible Apache::Test framework was developed especially for mod_perl
testing. While used to test the core mod_perl features, it is used by third-party module writers to
easily test their modules. Moreover Apache::Test was adopted by Apache and currently used to
test both Apache 1.3, 2.0 and other ASF projects. Anything that runs top of Apache can be tested
with Apache::Test, be the target written in Perl, C, PHP, etc.

The support of the new MPMs model makes mod_perl 2.0 can scale better on wider range of plat-
forms. For example if you’ve happened to try mod_perl 1.0 on Win32 you probably know that the
requests had to be serialized, i.e. only a single request could be processed at a time, rendering the
Win32 platform unusable with mod_perl as a heavy production service. Thanks to the new Apache
MPM design, now mod_perl 2.0 can be used efficiently on Win32 platforms using its native win32
MPM.

1.7.5��Optimizations

The rewrite of mod_perl gives us the chances to build a smarter, stronger and faster implementation based
on lessons learned over the 4.5 years since mod_perl was introduced. There are optimizations which can
be made in the mod_perl source code, some which can be made in the Perl space by optimizing its syntax
tree and some a combination of both. In this section we’ll take a brief look at some of the optimizations
that are being considered.

The details of these optimizations from the most part are hidden from mod_perl users, the exception being
that some will only be turned on with configuration directives. A few of which include:

"Compiled" Perl*Handlers

Inlined Apache::*.xs calls

Use of Apache Pools for memory allocations

1.8��Installing mod_perl 2.0
Since as of this writing mod_perl 2.0 wasn’t released yet, the installation instructions may change a bit,
but the core should be the same.

16 Nov 200214

Stas Bekman1.8��Installing mod_perl 2.0

1.8.1��Installing from Source

First download the latest stable sources of Apache 2.0, mod_perl 2.0 and Perl 5.8.0.

mod_perl 2.0 from http://perl.apache.org/dist/.

Apache 2.0 from http://httpd.apache.org/dist/.

Perl 5.8.0 from http://cpan.org/src/.

You can always find the most up-to-date download information at http://perl.apache.org/download/

Next, build Apache 2.0:

1. Extract the source (as usual replace x with the correct version number):

 panic% tar -xzvf httpd-2.0.xx

If you don’t have GNU tar(1) use the appropriate tools and flags to extract the source.

2. Configure:

 panic% cd httpd-2.0.xx
 panic% ./configure --prefix=/home/httpd/httpd-2.0 --with-mpm=prefork

Adjust the --prefix option to a directory of your choice, where you want Apache 2.0 to be
installed. If you want to use a different MPM, adjust the --with-mpm option. The easiest way to
find all of the configuration options for Apache 2.0 is to run:

 panic% ./configure --help

3. Finally, build and install:

 panic% make && make install

If you don’t have Perl 5.6.0 or higher installed or you need to rebuild it because you want to enable certain
compile-time features, build Perl (we will assume that you build Perl 5.8.0):

1. Extract the source:

 panic% tar -xzvf perl-5.8.0.tar.gz

2. Configure:

 panic% cd perl-5.8.0
 panic% ./Configure -des -Dprefix=$HOME/perl/perl-5.8.0 -Dusethreads

This configuration accepts all the defaults suggested by the Configure script and produces a terse
output. The -Dusethreads option enables Perl ithreads. The -Dprefix option specifies a
custom installation directory, which you may want to adjust. For example you may decide to install it
in the default location provided by Perl, which is /usr/local under most systems.

1516 Nov 2002

1.8.1��Installing from SourceThe Next Generation: mod_perl 2.0

http://perl.apache.org/dist/

http://httpd.apache.org/dist/

http://cpan.org/src/

http://perl.apache.org/download/

For a complete list of configuration options and for information on installation on non-Unix systems,
refer to the INSTALL document.

3. Now build, test and install Perl.

 panic% make && make test && make install

Before proceeding with installation of mod_perl 2.0, it’s advisable to install at least the LWP package into
newly installed Perl so later you can fully test mod_perl 2.0. You can use CPAN.pm to accomplish that:

 panic% $HOME/perl/perl-5.8.0/bin/perl -MCPAN -e ’install("LWP")’

Now that you have Perl 5.8.0 and Apache 2.0 installed we can proceed with mod_perl 2.0 installation:

1. Extract the source:

 panic% tar -xzvf mod_perl-2.0.x.tar.gz

2. Configure:

Remember the nightmare number of options for mod_perl 1.0? You only need one option to build
mod_perl 2.0. If you need more control, read install.pod in the source mod_perl distribution or online
at http://perl.apache.org/docs/2.0/.

 panic% cd mod_perl-2.0.x
 panic% perl Makefile.PL MP_AP_PREFIX=/home/stas/src/httpd-2.0.xx

The MP_AP_PREFIX option specifies the base location of the installed Apache 2.0 or its source
directory where the Apache include/ directory can be found.

3. Now build, test and install mod_perl 2.0:

 panic% make && make test && make install

On Win32 you have to use nmake instead of make and the && chaining doesn’t work on all Win32
platforms, so instead you should do:

 C:\> nmake
 C:\> nmake test
 C:\> nmake install

1.8.2��Installing Binaries

Apache 2.0 binaries can be obtained from: http://httpd.apache.org/dist/binaries/.

Perl 5.6.1 or 5.8.0 binaries can be obtained from: http://cpan.org/ports/index.html.

For mod_perl 2.0, as of this writing only the binaries for the Win32 platform are available, kindly
prepared and maintained by Randy Kobes.: Once mod_perl 2.0 is released various OS distributions will
provide a binary version for their platforms.

16 Nov 200216

Stas Bekman1.8.2��Installing Binaries

http://perl.apache.org/docs/2.0/

http://httpd.apache.org/dist/binaries/

http://cpan.org/ports/index.html

If you are not on Win32 platform you can safely skip to the next section.

There are two ways of obtaining a binary mod_perl-2 package for Win32:

PPM

The first, for ActivePerl users, is through PPM - this assumes you already have ActivePerl (build 6xx)
from http://www.activestate.com/ and a Win32 Apache-2 binary from http://httpd.apache.org/. In
installing this, you may find it convenient when transcribing any Unix-oriented documentation to
choose installation directories that do not have spaces in their names (e.g., C:\Apache2).

After installing Perl and Apache-2, you can then install mod_perl 2.0 via the PPM utility. ActiveState
does not maintain mod_perl in their ppm repository, so you must get it from a different location other
than ActiveState’s site. One way is simply as:

 C:\> ppm install http://theoryx5.uwinnipeg.ca/ppmpackages/mod_perl-2.ppd

Another way, which will be useful if you plan on installing additional Apache modules, is to set the
repository within the ppm shell utility as (here and afterwards broken over 2 lines for readability):

 PPM> set repository theoryx5
 http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver?urn:/PPMServer

or, for ppm3:

 PPM> rep add theoryx5
 http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver?urn:/PPMServer

mod_perl-2 can then be installed as:

 PPM> install mod_perl-2

This will install the necessary modules under an Apache2/ subdirectory in your Perl tree, so as not to
disturb an existing Apache/ directory from mod_perl-1. See the section below on configuring
mod_perl to add this directory to the @INC path for searching for modules.

The mod_perl PPM package also includes the necessary Apache DLL mod_perl.so; a post-instal-
lation script should be run which will offer to copy this file to your Apache2 modules directory (e.g.,
C:\Apache2\modules). If this is not done, you can get the file mod_perl-2.tar.gz from
http://theoryx5.uwinnipeg.ca/ppmpackages/x86/ which, when unpacked, contains mod_perl.so in the
top-level directory.

Note that the mod_perl package available from this site will always use the latest mod_perl sources
compiled against the latest official Apache release; depending on changes made in Apache, you may
or may not be able to use an earlier Apache binary. However, in the Apache Win32 world it is partic-
ularly a good idea to use the latest version, for bug and security fixes.

Apache/mod_perl binary

1716 Nov 2002

1.8.2��Installing BinariesThe Next Generation: mod_perl 2.0

http://www.activestate.com/

http://httpd.apache.org/

http://theoryx5.uwinnipeg.ca/ppmpackages/x86/

At ftp://theoryx5.uwinnipeg.ca/pub/other/ you can find an archive Apache2.tar.gz containing a binary
version of Apache-2/mod_perl-2. This archive unpacks into an Apache2 directory, underneath which
is a blib subdirectory containing the necessary mod_perl files (enabled with a PerlSwitches
directive in httpd.conf). Some editing of httpd.conf will be necessary to reflect the location of the
installed directory. See the Apache2.readme file for further information.

This package, which is updated periodically, is compiled against recent cvs sources of Apache-2 and
mod_perl-2. As such, it may contain features, and bugs, not present in the current official releases.
Also for this reason, these may not be binary compatible with other versions of
Apache-2/mod_perl-2.

1.9��Configuring mod_perl 2.0
Similar to mod_perl 1.0, in order to use mod_perl 2.0 a few configuration settings should be added to
httpd.conf. They are quite similar to 1.0 settings but some directives were renamed and new directives
were added.

To enable mod_perl built as DSO add to httpd.conf:

 LoadModule perl_module modules/mod_perl.so

This setting specifies the location of the mod_perl module relative to the ServerRoot setting, therefore
you should put it somewhere after ServerRoot is specified.

If mod_perl has been statically linked it’s automatically enabled.

Win32 users need to make sure that the path to the Perl binary (e.g., C:\Perl\bin) is in the PATH environ-
ment variable.

1.9.1��Accessing the mod_perl 2.0 Modules

In order to prevent from inadvertently loading mod_perl 1.0 modules mod_perl 2.0 Perl modules are
installed into dedicated directories under Apache2/. The Apache2 module prepends the locations of the
mod_perl 2.0 libraries to @INC, which are the same as the core @INC, but with Apache2/ appended. This
module has to be loaded just after mod_perl has been enabled. This can be accomplished with:

 use Apache2 ();

in the startup file. Only if you don’t use a startup file you can add:

 PerlModule Apache2

to httpd.conf, due to the order the PerlRequire and PerlModule directives are processed.

16 Nov 200218

Stas Bekman1.9��Configuring mod_perl 2.0

ftp://theoryx5.uwinnipeg.ca/pub/other/

1.9.2��Startup File

Next usually a startup file with Perl code is loaded:

 PerlRequire "/home/httpd/httpd-2.0/perl/startup.pl"

It’s used to adjust Perl modules search paths in @INC, pre-load commonly used modules, pre-compile
constants, etc. Here is a typical startup.pl for mod_perl 2.0:

 file:startup.pl

 use Apache2 ();

 use lib qw(/home/httpd/perl);

 # enable if the mod_perl 1.0 compatibility is needed
 # use Apache::compat ();

 use ModPerl::Util (); #for CORE::GLOBAL::exit

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::RequestUtil ();

 use Apache::Server ();
 use Apache::ServerUtil ();
 use Apache::Connection ();
 use Apache::Log ();

 use APR::Table ();

 use ModPerl::Registry ();

 use Apache::Const -compile => ’:common’;
 use APR::Const -compile => ’:common’;

 1;

In this file the Apache2 modules is loaded, so the 2.0 modules will be found. Afterwards @INC in
adjusted to include non-standard directories with Perl modules:

 use lib qw(/home/httpd/perl);

If you need to use the backwards compatibility layer load:

 use Apache::compat ();

Next we preload the commonly used mod_perl 2.0 modules and precompile common constants.

Finally as usual the startup.pl file must be terminated with 1;.

1916 Nov 2002

1.9.2��Startup FileThe Next Generation: mod_perl 2.0

1.9.3��Perl’s Command Line Switches

Now you can pass any Perl’s command line switches in httpd.conf using the PerlSwitches directive.

For example to enable warnings and taint checking add:

 PerlSwitches -wT

The -I command switch now can be used to adjust @INC values:

 PerlSwitches -I/home/stas/modperl

For example you can use that technique to set different different @INC values for different virtual hosts as
we will see later.

1.9.4��mod_perl 2.0 Core Handlers

mod_perl 2.0 provides two types of core handlers: modperl and perl-script.

1.9.4.1��perl-script

Configured as:

 SetHandler perl-script

Most mod_perl handlers use the perl-script handler. Among other things it does:

PerlOptions +GlobalRequest is in effect unless:

 PerlOptions -GlobalRequest

is specified.

PerlOptions +SetupEnv is in effect unless:

 PerlOption -SetupEnv

is specified.

STDIN and STDOUT get tied to the request object $r, which makes possible to read from STDIN
and print directly to STDOUT via CORE::print(), instead of implicit calls like $r->print().

Several special global Perl variables are saved before the handler is called and restored afterwards
(similar to mod_perl 1.0). This includes: %ENV, @INC, $/, STDOUT’s $| and END blocks array
(PL_endav).

16 Nov 200220

Stas Bekman1.9.3��Perl’s Command Line Switches

1.9.4.2��modperl

Configured as:

 SetHandler modperl

The bare mod_perl handler type, which just calls the Perl*Handler’s callback function. If you don’t
need the features provided by the perl-script handler, with the modperl handler, you can gain even more
performance. (This handler isn’t available in mod_perl 1.0.)

Unless the Perl*Handler callback running under the modperl handler is configured with:

 PerlOptions +SetupEnv

or calls:

 $r->subprocess_env;

in a void context (which has the same effect as PerlOptions +SetupEnv for the handler that called
it), only the following environment variables are accessible via %ENV:

MOD_PERL and GATEWAY_INTERFACE (always)

PATH and TZ (if you had them defined in the shell or httpd.conf)

Therefore if you don’t want to add the overhead of populating %ENV, when you simply want to pass some
configuration variables from httpd.conf, consider using PerlSetVar and PerlAddVar instead of
PerlSetEnv and PerlPassEnv. In your code you can retrieve the values using the dir_config()
method. For example if you set in httpd.conf:

 <Location /print_env2>
 SetHandler modperl
 PerlResponseHandler MyApache::VarTest
 PerlSetVar VarTest VarTestValue
 </Location>

this value can be retrieved inside MyApache::VarTest::handler() with:

 $r->dir_config(’VarTest’);

Alternatively use the Apache core directives SetEnv and PassEnv, which always populate
r->suprocess_env, but this doesn’t happen until the Apache fixup phase, which could be too late for
your needs.

1.9.4.3��A Simple Response Handler Example

Let’s demonstrate the differences between the modperl and the perl-script core handlers in the
following example, which represents a simple mod_perl response handler which prints out the environ-
ment variables as seen by it:

2116 Nov 2002

1.9.4��mod_perl 2.0 Core HandlersThe Next Generation: mod_perl 2.0

 file:MyApache/PrintEnv1.pm

 package MyApache::PrintEnv1;
 use strict;

 use Apache::RequestRec (); # for $r->content_type

 use Apache::Const -compile => ’:common’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 for (sort keys %ENV){
 print "$_ => $ENV{$_}\n";
 }

 return Apache::OK;
 }

 1;

This is the required configuration:

 PerlModule MyApache::PrintEnv1
 <Location /print_env1>
 SetHandler perl-script
 PerlResponseHandler MyApache::PrintEnv1
 </Location>

Now issue a request to http://localhost/print_env1 and you should see all the environment variables
printed out.

Here is the same response handler, adjusted to work with the modperl core handler:

 file:MyApache/PrintEnv2.pm

 package MyApache::PrintEnv2;
 use strict;

 use Apache::RequestRec (); # for $r->content_type
 use Apache::RequestIO (); # for $r->print

 use Apache::Const -compile => ’:common’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->subprocess_env;
 for (sort keys %ENV){
 $r->print("$_ => $ENV{$_}\n");
 }

16 Nov 200222

Stas Bekman1.9.4��mod_perl 2.0 Core Handlers

http://localhost/print_env1

 return Apache::OK;
 }

 1;

The configuration now will look as:

 PerlModule MyApache::PrintEnv2
 <Location /print_env2>
 SetHandler modperl
 PerlResponseHandler MyApache::PrintEnv2
 </Location>

MyApache::Print Env2 cannot use print() and therefore uses $r->print() to generate a
response. Under the modperl core handler %ENV is not populated by default, therefore subpro -
cess _env() is called in a void context. Alternatively we could configure this section to do:

 PerlOptions +SetupEnv

If you issue a request to http://localhost/print_env2, you should see all the environment variables printed
out as with http://localhost/print_env1.

1.9.5��PerlOptions Directive

The directive PerlOp tions provides fine-grained configuration for what were compile-time only
options in the first mod_perl generation. It also provides control over what class of PerlIn ter preter
is used for a <Virtu al Host > or location configured with <Loca tion >, <Direc tory >, etc.

Options are enabled by prepending + and disabled with - . The options include:

1.9.5.1��Enable

On by default, can be used to disable mod_perl for a given Virtu al Host . For example:

 <VirtualHost ...>
 PerlOptions -Enable
 </VirtualHost>

1.9.5.2��Clone

Share the parent Perl interpreter, but give the Virtu al Host its own interpreter pool. For example
should you wish to fine tune interpreter pools for a given virtual host:

 <VirtualHost ...>
 PerlOptions +Clone
 PerlInterpStart 2
 PerlInterpMax 2
 </VirtualHost>

2316 Nov 2002

1.9.5��PerlOptions DirectiveThe Next Generation: mod_perl 2.0

http://localhost/print_env2

http://localhost/print_env1

This might be worthwhile in the case where certain hosts have their own sets of large modules, used only
in each host. By tuning each host to have its own pool, that host will continue to reuse the Perl allocations
in their specific modules.

When cloning a Perl interpreter, to inherit base Perl interpreter’s Perl Switches use:

 <VirtualHost ...>
 ...
 PerlSwitches +inherit
 </VirtualHost>

1.9.5.3��Parent

Create a new parent Perl interpreter for the given Virtu al Host and give it its own interpreter pool
(implies the Clone option).

A common problem with mod_perl 1.0 was the shared namespace between all code within the process.
Consider two developers using the same server and each wants to run a different version of a module with
the same name. This example will create two parent Perl interpreters, one for each <Virtu al Host >,
each with its own namespace and pointing to a different paths in @INC:

 <VirtualHost ...>
 ServerName dev1
 PerlOptions +Parent
 PerlSwitches -Mblib=/home/dev1/lib/perl
 </VirtualHost>

 <VirtualHost ...>
 ServerName dev2
 PerlOptions +Parent
 PerlSwitches -Mblib=/home/dev2/lib/perl
 </VirtualHost>

Or even for a given location, for something like "dirty" cgi scripts:

 <Location /cgi-bin>
 PerlOptions +Parent
 PerlInterpMaxRequests 1
 PerlInterpStart 1
 PerlInterpMax 1
 PerlResponseHandler ModPerl::Registry
 </Location>

will use a fresh interpreter with its own namespace to handle each request.

1.9.5.4��Perl*Handler

Disable Perl*Handler s, all compiled-in handlers are enabled by default. The option name is derived
from the Perl*Handler name, by stripping the Perl and Handler parts of the word. So Perl -
LogHandler becomes Log which can be used to disable Perl LogHandler :

16 Nov 200224

Stas Bekman1.9.5��PerlOptions Directive

 PerlOptions -Log

Suppose one of the hosts does not want to allow users to configure PerlAu then Handler , PerlAu -
thzHan dler , PerlAc cessHan dler and <Perl> sections:

 <VirtualHost ...>
 PerlOptions -Authen -Authz -Access -Sections
 </VirtualHost>

Or maybe everything but the response handler:

 <VirtualHost ...>
 PerlOptions None +Response
 </VirtualHost>

1.9.5.5��AutoLoad

Resolve Perl*Handlers at startup time, which includes loading the modules from disk if not already
loaded.

In mod_perl 1.0, configured Perl*Handlers which are not a fully qualified subroutine names are
resolved at request time, loading the handler module from disk if needed. In mod_perl 2.0, configured
Perl*Handlers are resolved at startup time. By default, modules are not auto-loaded during
startup-time resolution. It is possible to enable this feature with:

 PerlOptions +Autoload

Consider this configuration:

 PerlResponseHandler MyApache::Magick

In this case, MyApache::Magick is the package name, and the subroutine name will default to handler.
If the MyApache::Magick module is not already loaded, PerlOp tions +Autoload will attempt
to pull it in at startup time. With this option enabled you don’t have to explicitly load the handler modules.
For example you don’t need to add:

 PerlModule MyApache::Magick

in our example.

1.9.5.6��GlobalRequest

Setup the global request_rec for use with Apache->request . This setting is needed for example if
you use CGI.pm to process the incoming request.

This setting is enabled by default for sections configured as:

 <Location ...>
 SetHandler perl-script
 ...
 </Location>

2516 Nov 2002

1.9.5��PerlOptions DirectiveThe Next Generation: mod_perl 2.0

And can be disabled with:

 <Location ...>
 SetHandler perl-script
 PerlOptions -GlobalRequest
 ...
 </Location>

1.9.5.7��ParseHeaders

Scan output for HTTP headers, same functionality as mod_perl 1.0’s PerlSend Headers , but more
robust. This option is usually needs to be enabled for registry scripts which send the HTTP header with:

 print "Content-type: text/html\n\n";

1.9.5.8��MergeHandlers

Turn on merging of Perl*Handler arrays. For example with a setting:

 PerlFixupHandler MyApache::FixupA

 <Location /inside>
 PerlFixupHandler MyApache::FixupB
 </Location>

a request for /inside only runs MyApache::FixupB (mod_perl 1.0 behavior). But with this configura-
tion:

 PerlFixupHandler MyApache::FixupA

 <Location /inside>
 PerlOptions +MergeHandlers
 PerlFixupHandler MyApache::FixupB
 </Location>

a request for /inside will run both MyApache::FixupA and MyApache::FixupB handlers.

1.9.5.9��SetupEnv

Set up environment variables for each request ala mod_cgi.

When this option is enabled, mod_perl fiddles with the environment to make it appear as if the code is
called under the mod_cgi handler. For example, the $ENV{QUERY_STRING} environment variable is
initialized with the contents of Apache::args(), and the value returned by Apache::server_hostname() is
put into $ENV{SERVER_NAME}.

But %ENV population is expensive. Those who have moved to the Perl Apache API no longer need this
extra %ENV population, and can gain by disabling it. A code using the CGI.pm module require PerlOp -
tions +Setu pEnv because that module relies on a properly populated CGI environment table.

16 Nov 200226

Stas Bekman1.9.5��PerlOptions Directive

This option is enabled by default for sections configured as:

 <Location ...>
 SetHandler perl-script
 ...
 </Location>

Since this option adds an overhead to each request, if you don’t need this functionality you can turn it off
for a certain section:

 <Location ...>
 SetHandler perl-script
 PerlOptions -SetupEnv
 ...
 </Location>

or globally:

 PerlOptions -SetupEnv
 <Location ...>
 ...
 </Location>

and then it’ll affect the whole server. It can still be enabled for sections that need this functionality.

When this option is disabled you can still read environment variables set by you. For example when you
use the following configuration:

 PerlOptions -SetupEnv
 PerlModule Modperl::Registry
 <Location /perl>
 PerlSetEnv TEST hi
 SetHandler perl-script
 PerlHandler ModPerl::Registry
 Options +ExecCGI
 </Location>

and you issue a request for this script:

 setupenvoff.pl

 use Data::Dumper;
 my $r = Apache->request();
 $r->send_http_header(’text/plain’);
 print Dumper(\%ENV);

you should see something like this:

 $VAR1 = {
 ’GATEWAY_INTERFACE’ => ’CGI-Perl/1.1’,
 ’MOD_PERL’ => ’mod_perl/2.0.1’,
 ’PATH’ => ’bin:/usr/bin’,
 ’TEST’ => ’hi’
 };

2716 Nov 2002

1.9.5��PerlOptions DirectiveThe Next Generation: mod_perl 2.0

Notice that we have got the value of the environment variable TEST.

1.9.6��Threads Mode Specific Directives

These directives are enabled only in a threaded mod_perl+Apache combo:

1.9.6.1��PerlInterpStart

The number of interpreters to clone at startup time.

1.9.6.2��PerlInterpMax

If all running interpreters are in use, mod_perl will clone new interpreters to handle the request, up until
this number of interpreters is reached. when PerlIn terp Max is reached, mod_perl will block (via
COND_WAIT()) until one becomes available (signaled via COND_SIGNAL()).

1.9.6.3��PerlInterpMinSpare

The minimum number of available interpreters this parameter will clone interpreters up to PerlIn -
terp Max, before a request comes in.

1.9.6.4��PerlInterpMaxSpare

mod_perl will throttle down the number of interpreters to this number as those in use become available.

1.9.6.5��PerlInterpMaxRequests

The maximum number of requests an interpreter should serve, the interpreter is destroyed when the
number is reached and replaced with a fresh clone.

1.9.6.6��PerlInterpScope

As mentioned, when a request in a threaded mpm is handled by mod_perl, an interpreter must be pulled
from the interpreter pool. The interpreter is then only available to the thread that selected it, until it is
released back into the interpreter pool. By default, an interpreter will be held for the lifetime of the
request, equivalent to this configuration:

 PerlInterpScope request

For example, if a PerlAc cessHan dler is configured, an interpreter will be selected before it is run
and not released until after the logging phase.

Interpreters will be shared across subrequests by default, however, it is possible to configure the inter-
preter scope to be per-subrequest on a per-directory basis:

 PerlInterpScope subrequest

16 Nov 200228

Stas Bekman1.9.6��Threads Mode Specific Directives

With this configuration, an autoindex generated page, for example, would select an interpreter for each
item in the listing that is configured with a Perl*Handler.

It is also possible to configure the scope to be per-handler:

 PerlInterpScope handler

With this configuration, an interpreter will be selected before PerlAc cessHan dlers are run, and
putback immediately afterwards, before Apache moves onto the authentication phase. If a Perl Fix -
upHandler is configured further down the chain, another interpreter will be selected and again putback
afterwards, before Perl Respon se Handler is run.

For protocol handlers, the interpreter is held for the lifetime of the connection. However, a C protocol
module might hook into mod_perl (e.g. mod_ftp) and provide a request_rec record. In this case, the
default scope is that of the request. Should a mod_perl handler want to maintain state for the lifetime of an
ftp connection, it is possible to do so on a per-virtualhost basis:

 PerlInterpScope connection

1.9.7��Retrieving Server Startup Options

The httpd server startup options can be retrieved using Apache::exists_config_define() . For
example to check whether the server has been started in a single mode:

 % httpd -DONE_PROCESS

use:

 if (Apache::exists_config_define("ONE_PROCESS")) {
 print "Running in a single mode";
 }

1.10��New Apache Phases and Corresponding
Perl*Handlers

Since the majority of the Apache phases supported by mod_perl haven’t changed since mod_perl 1.0, in
this section we will discuss only phases and the corresponding handlers that were added or changed in
mod_perl 2.0.

1.10.1��Server Configuration (Startup) Phases

open_logs, configured with PerlOpen LogsHan dler , and post_config, configured with Perl Post -
ConfigHan dler , are the two new phases available during the server startup.

2916 Nov 2002

1.10��New Apache Phases and Corresponding Perl*HandlersThe Next Generation: mod_perl 2.0

1.10.1.1��PerlOpenLogsHandler

The open_logs phase happens just before the post_config phase.

Handlers registered by PerlOpenLogsHandler are usually used for opening module-specific log files.

At this stage the STDERR stream is not yet redirected to error_log, and therefore any messages to that
stream will be printed to the console the server is starting from (if such exists).

The PerlOpenLogsHandler directive may appear in the main configuration files and within virtual
host sections.

Apache will continue executing all registered for this phase handlers until the first handler returns some-
thing other than Apache::OK or Apache::DECLINED.

For example here is the MyApache::OpenLogs handler that opens a custom log file:

 file:MyApache/OpenLogs.pm

 package MyApache::OpenLogs;

 use strict;

 use Apache::Log ();
 use Apache::ServerUtil ();

 use File::Spec::Functions;

 my $log_file = catfile "logs", "mylog";

 sub handler {
 my ($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = Apache::server_root_relative($conf_pool, $log_file);
 $s->warn("opening the log file: $log_path");
 open my $log, ">>$log_path" or die "can’t open $log_path: $!";
 return Apache::OK;
 }
 1;

The open_logs phase handlers accept four arguments: the configuration pool, the logging streams pool, the
temporary pool and the server object. In our example the handler uses the function
Apache::server_root_relative() to set the full path to the log file, which is then opened. Of
course in the real world handlers the module needs to be extended to provide an accessor that can write to
this log file.

To configure this handler add to httpd.conf:

 PerlOpenLogsHandler MyApache::OpenLogs

16 Nov 200230

Stas Bekman1.10.1��Server Configuration (Startup) Phases

1.10.1.2��PerlPostConfigHandler

The post_config phase happens right after Apache has processed the configuration files, before any child
processes were spawned (which happens at the child_init phase).

This phase can be used for initializing things to be shared between all child processes. You can do the
same in the startup file, but in the post_config phase you have an access to a complete configuration tree.

The post_config phase is exactly the same as the open_logs phase. The PerlPostConfigHandler
directive may appear in the main configuration files and within virtual host sections. Apache will run all
registered for this phase handlers until the first handler returns something other than Apache::OK or
Apache::DECLINED. This phase’s handlers receive the same four arguments as the open_logs phase’s
handlers:

 sub handler {
 my ($conf_pool, $log_pool, $temp_pool, $s) = @_;
 # ...
 return Apache::OK;
 }

1.10.2��Connection Phases

Since Apache 2.0 makes it possible to implement other than HTTP protocols, the connection phases
pre_connection, configured with PerlPreConnectionHandler, and process_connection, configured
with PerlProcessConnectionHandler, were added. The standard HTTP handlers normally don’t
need need these phases, since HTTP is already handled by the request phases. Therefore these phases are
used mostly for the implementation of non-HTTP protocol implementations.

1.10.2.1��PerlPreConnectionHandler

The pre_connection phase happens just after the server accepts the connection, but before it is handed off
to a protocol module to be served. It gives modules an opportunity to modify the connection as soon as
possible. The core server uses this phase to setup the connection record based on the type of connection
that is being used.

For example this phase could be a good place to automatically reload modified perl modules during the
development, similar to Apache::Reload.

Apache will continue executing all registered for this phase handlers until the first handler returns some-
thing other than Apache::OK or Apache::DECLINED.

The PerlPreConnectionHandler directive may appear in the main configuration files and within
virtual host sections.

A pre_connection handler accepts connection record and socket objects as its arguments:

3116 Nov 2002

1.10.2��Connection PhasesThe Next Generation: mod_perl 2.0

 sub handler {
 my ($c, $socket) = @_;
 # ...
 return Apache::OK;
 }

1.10.2.2��PerlProcessConnectionHandler

The process_connection phase is used to actually process the connection that was received. Only protocol
modules should assign handlers for this phase, as it gives them an opportunity to replace the standard
HTTP processing with processing for some other protocols (e.g., POP3, FTP, etc.).

Apache will continue executing all registered for this phase handlers until the first handler returns some-
thing other than Apache::DECLINED.

The PerlPreConnectionHandler directive may appear in the main configuration files and within
virtual host sections.

A process_connection handler accepts a connection record object as its only argument, a socket object can
be retrieved from the connection record object.

 sub handler {
 my ($c) = @_;
 my $socket = $c->client_socket;
 # ...
 return Apache::OK;
 }

1.10.2.2.1��MyApache::Eliza Protocol Module

Apache 2.0 ships with an example protocol module, mod_echo, which simply reads data from the client
and echos it right back. Here we’ll take a look at a Perl version of that module, called
MyApache::Eliza, with a twist--instead of echoing whatever was read back to the client, it sends the
read data as an input to Chatbot::Eliza, which implements a mockery Rogerian psychotherapist, and
forwards the response from the psychotherapist back to the client.

A protocol handler is configured using the PerlProcessConnectionHandler directive and we will
use the Listen and <VirtualHost> directives to bind to a non-standard port 8084:

 Listen 8084
 <VirtualHost _default_:8084>
 PerlModule MyApache::Eliza
 PerlProcessConnectionHandler MyApache::Eliza
 </VirtualHost>

MyApache::Eliza is then enabled when starting Apache:

 % httpd

16 Nov 200232

Stas Bekman1.10.2��Connection Phases

And we give it a whirl:

 % telnet localhost 8084
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Hello Eliza
 How do you do. Please state your problem.

 How are you?
 Oh, I?

 Why do I have core dumped?
 You say Why do you have core dumped?

 I feel like writing some tests today, you?
 I’m not sure I understand you fully.

 Good bye, Eliza
 Does talking about this bother you?

 Connection closed by foreign host.

The example handler starts with the standard package declaration and of course, use strict;. As with
all Perl*Handlers, the subroutine name defaults to handler. However, in the case of a protocol
handler, the first argument is not a request_rec, but a conn_rec blessed into the
Apache::Connection class. We have a direct access to the client socket via Apache::Connec-
tion’s client_socket method. This returns an object blessed into the APR::Socket class.

Inside the read/print loop, the handler attempts to read BUFF_LEN bytes from the client socket into the
$buff buffer. The $rlen parameter will be set to the number of bytes actually read. The
APR::Socket::recv() method returns an APR status value, be we need only check the read length
to break out of the loop if it is less than or equal to 0 bytes. The handler also breaks the loop after process-
ing an input including the "good bye" string. Otherwise if the handler receives some data, it sends this data
to the $eliza object which represents the psychotherapist, whose returned text is then sent back to the
client with the APR::Socket::send() method. When the read/print loop is finished the handler
returns Apache::OK, telling Apache to terminate the connection.

 file:MyApache/Eliza.pm

 package MyApache::Eliza;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Connection ();
 use APR::Socket ();

 require Chatbot::Eliza;

 use Apache::Const -compile => ’OK’;

 use constant BUFF_LEN => 1024;

3316 Nov 2002

1.10.2��Connection PhasesThe Next Generation: mod_perl 2.0

 my $eliza = new Chatbot::Eliza;

 sub handler {
 my Apache::Connection $c = shift;
 my APR::Socket $socket = $c->client_socket;

 my $buff;
 my $last = 0;
 for (;;) {
 my($rlen, $wlen);
 $rlen = BUFF_LEN;
 $socket->recv($buff, $rlen);
 last if $rlen <= 0;

 # \r is sent instead of \n if the client is talking over telnet
 $buff =~ s/[\r\n]*$//;
 $last++ if $buff =~ /good bye/i;
 $buff = $eliza->transform($buff) . "\n\n";
 $socket->send($buff, length $buff);
 last if $last;
 }

 Apache::OK;
 }

 1;

1.10.2.2.2��MyApache::Eliza2 Protocol Module

The previous implementation can’t work with filters. The following implementation uses bucket brigades
and therefore can use I/O filters.

 file:MyApache/Eliza2.pm

 package MyApache::Eliza2;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Connection ();
 use APR::Bucket ();
 use APR::Brigade ();
 use APR::Util ();

 require Chatbot::Eliza;

 use APR::Const -compile => qw(SUCCESS EOF);
 use Apache::Const -compile => qw(OK MODE_GETLINE);

 my $eliza = new Chatbot::Eliza;

 sub handler {
 my Apache::Connection $c = shift;

 my $bb_in = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $bb_out = APR::Brigade->new($c->pool, $c->bucket_alloc);

16 Nov 200234

Stas Bekman1.10.2��Connection Phases

 my $last = 0;

 while (1) {
 my $rv = $c->input_filters->get_brigade($bb_in,
 Apache::MODE_GETLINE);

 if ($rv != APR::SUCCESS or $bb_in->empty) {
 my $error = APR::strerror($rv);
 unless ($rv == APR::EOF) {
 warn "[eliza] get_brigade: $error\n";
 }
 $bb_in->destroy;
 last;
 }

 while (!$bb_in->empty) {

 my $bucket = $bb_in->first;

 $bucket->remove;

 if ($bucket->is_eos) {
 $bb_out->insert_tail($bucket);
 last;
 }

 my $data;
 my $status = $bucket->read($data);
 return $status unless $status == APR::SUCCESS;

 if ($data) {
 $data =~ s/[\r\n]*$//;
 $last++ if $data =~ /good bye/i;
 $data = $eliza->transform($data) . "\n\n";
 $bucket = APR::Bucket->new($data);
 }

 $bb_out->insert_tail($bucket);
 }

 my $b = APR::Bucket::flush_create($c->bucket_alloc);
 $bb_out->insert_tail($b);
 $c->output_filters->pass_brigade($bb_out);
 last if $last;
 }

 Apache::OK;
 }

 use base qw(Apache::Filter);
 use constant BUFF_LEN => 1024;

 sub lowercase : FilterConnectionHandler {
 my $filter = shift;

 while ($filter->read(my $buffer, BUFF_LEN)) {
 $filter->print(lc $buffer);

3516 Nov 2002

1.10.2��Connection PhasesThe Next Generation: mod_perl 2.0

 }

 return Apache::OK;
 }

 1;

And the corresponding configuration:

 Listen 8085
 <VirtualHost _default_:8085>
 PerlModule MyApache::Eliza2
 PerlProcessConnectionHandler MyApache::Eliza2
 PerlOutputFilterHandler MyApache::Eliza2::lowercase
 </VirtualHost>

MyApache::Eliza2::lowercase lowers the case of the response sent by Eliza, so if we run the
same session we might see:

 % telnet localhost 8085
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Hello Eliza
 how do you do. please state your problem.

 How are you?
 oh, i?

 Why do I have core dumped?
 you say why do you have core dumped?

 I feel like writing some tests today, you?
 i’m not sure i understand you fully.

 Good bye, Eliza
 does talking about this bother you?

 Connection closed by foreign host.

1.10.3��Request Phases

In the request phase nothing has changed, other than renaming the PerlHandler directive to PerlRe-
sponseHandler to better match the corresponding Apache phase name (response).

1.10.4��I/O Filtering Phases

Apache 2.0 considers all incoming and outgoing data as chunks of information, disregarding their kind and
source or storage methods. These data chunks are stored in buckets, which form bucket brigades. Both
input and output filters massage these bucket brigades and modify them if necessary.

16 Nov 200236

Stas Bekman1.10.3��Request Phases

As of this writing the mod_perl filtering API hasn’t been finalized yet, and it’s possible that it will change
by the time the production version of mod_perl 2.0 is released. However most concepts presented here
won’t change, and you should find the discussion and the examples useful for understanding how filters
work.

mod_perl provides two interfaces to filtering: a direct mapping to buckets and bucket brigades and a
simpler, stream-oriented interface (as of this writing the latter is available only for the output filtering).
The following examples will help to understand the difference between the two. The filters can do connec-
tion and request filtering. Apache distinguish between more types, and mod_perl will support those in the
future. mod_perl handlers specify the type of the filter using the subroutine attributes. For example a
request filter handler is declared using the FilterRequestHandler attribute:

 package MyApache::InputRequestFilterFoo;
 sub handler : FilterRequestHandler {
 my($filter, $bb, $mode, $block, $readbytes) = @_;
 #...
 }
 1;

and is usually configured in the <Location> or equivalent sections:

 <Location /input_filter>
 SetHandler modperl
 PerlResponseHandler MyApache::NiceResponse
 PerlInputFilterHandler MyApache::InputRequestFilterFoo
 </Location>

And as you can guess a connection handler uses the FilterConnectionHandler attribute (this time
we use the output filter as an example):

 package MyApache::OutputConnectionFilterBar;
 sub handler : FilterConnectionHandler {
 my($filter, $bb, $mode, $block, $readbytes) = @_;
 #...
 }
 1;

and configured outside the <Location> or equivalent sections, usually within the <VirtualHost> or
equivalent sections:

 Listen 8005
 <VirtualHost _default_:8005>
 PerlOutputFilterHandler MyApache::OutputConnectionFilterBar
 <Location />
 SetHandler modperl
 PerlResponseHandler MyApache::NiceResponse
 </Location>
 </VirtualHost>

3716 Nov 2002

1.10.4��I/O Filtering PhasesThe Next Generation: mod_perl 2.0

1.10.4.1��PerlInputFilterHandler

The PerlInputFilterHandler handler registers a filter for input filtering.

Let’s say that we want to test how our handlers behave when they are requested as HEAD requests, rather
than GET. We can alter the request headers at the incoming connection level transparently to all handlers.
So here is the input filter handler that does that:

 file:MyApache/InputFilterGET2HEAD.pm

 package MyApache::InputFilterGET2HEAD;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterConnectionHandler {
 my($filter, $bb, $mode, $block, $readbytes) = @_;

 my $c = $filter->c;
 my $ctx_bb = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $rv = $filter->next->get_brigade($ctx_bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 while (!$ctx_bb->empty) {
 my $bucket = $ctx_bb->first;

 $bucket->remove;

 if ($bucket->is_eos) {
 $bb->insert_tail($bucket);
 last;
 }

 my $data;
 my $status = $bucket->read($data);
 return $status unless $status == APR::SUCCESS;

 if ($data and $data =~ s|^GET|HEAD|) {

16 Nov 200238

Stas Bekman1.10.4��I/O Filtering Phases

 $bucket = APR::Bucket->new($data);
 }

 $bb->insert_tail($bucket);
 }

 Apache::OK;
 }

 1;

The filter handler is called for each bucket brigade, which in turn includes buckets with data. The gist of
any filter handler is to retrieve the bucket brigade sent from the previous filter, prepare a new empty
brigade, and move buckets from the former brigade to the latter optionally modifying the buckets on the
way, which may include removing or adding new buckets. Of course if the filter doesn’t want to modify
any of the buckets it may decide to path through the original brigade without doing any work.

In our example the handler first removes the bucket at the top of the brigade and looks at its type. If it sees
an end of stream, that removed bucket is linked to the tail of the bucket brigade that will go to the next
filter and it doesn’t attempt to read any more buckets. If this event doesn’t happen the handler reads the
data from that bucket and if it finds that the data is of interest to us, it modifies the data, creates a new
bucket using the modified data and links it to the tail of the outgoing brigade, while discarding the original
bucket. In our case the interesting data is a such that matches the regex /^GET/. If the data is not interest-
ing to the handler, it simply links the unmodified bucket to the outgoing brigade.

The handler looks for data like:

 GET /perl/test.pl HTTP/1.1

and turns it into:

 HEAD /perl/test.pl HTTP/1.1

For example, consider the following response handler:

 file:MyApache/RequestType.pm

 package MyApache::RequestType;

 use strict;
 use warnings;

 use Apache::RequestIO ();
 use Apache::RequestRec ();
 use Apache::Response ();

 use Apache::Const -compile => ’OK’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 my $response = "the request type was " . $r->method;
 $r->set_content_length(length $response);

3916 Nov 2002

1.10.4��I/O Filtering PhasesThe Next Generation: mod_perl 2.0

 $r->print($response);

 Apache::OK;
 }

 1;

which returns to the client the request type it has issued. In the case of the HEAD request Apache will
discard the response body, but it’ll will still set the correct Content-Length header, which will be 24
in case of the GET request and 25 for HEAD. Therefore if this response handler is configured as:

 Listen 8005
 <VirtualHost _default_:8005>
 <Location />
 SetHandler modperl
 PerlResponseHandler +MyApache::RequestType
 </Location>
 </VirtualHost>

and a GET request is issued to /:

 panic% perl -MLWP::UserAgent -le \
 ’$r = LWP::UserAgent->new()->get("http://localhost:8005/"); \
 print $r->headers->content_length . ": ". $r->content’
 24: the request type was GET

the response is:

 the request type was GET

And the Content-Length header is set to 24.

However if we enable the MyApache::InputFilterGET2HEAD input connection filter:

 Listen 8005
 <VirtualHost _default_:8005>
 PerlInputFilterHandler +MyApache::InputFilterGET2HEAD

 <Location />
 SetHandler modperl
 PerlResponseHandler +MyApache::RequestType
 </Location>
 </VirtualHost>

And issue the same GET request, we get only:

 25:

which means that the body was discarded by Apache, because our filter turned the GET request into a
HEAD request and you can see that if Apache wasn’t discarding the body on HEAD, the response would be:

16 Nov 200240

Stas Bekman1.10.4��I/O Filtering Phases

 the request type was HEAD

that’s why the body length is 25 and not 24 as in the previous case.

1.10.4.2��PerlOutputFilterHandler

The PerlOutputFilterHandler handler registers and configures output filters.

Let’s look at the example of a stream-oriented output filter and see how it works through this example.

MyApache::ROT13 implements the simple Caesar-cypher encryption that replaces each English letter
with the one 13 places forward or back along the alphabet, so that "mod_perl 2.0 rules!" becomes
"zbq_crey 2.0 ehyrf!". Since the English alphabet consists of 26 letters, the ROT13 encryption is
self-inverse, so the same code can be used for encoding and decoding. In our example
MyApache::ROT13 reads portions of the output generated by some previous handler, rotates the charac-
ters and sends them downstream.

The first argument to a filter handler is an Apache::Filter object, which as of this writing provides
two methods read and print. The read method reads a chunk of the output stream into the given buffer,
returning the number of characters read. An optional size argument may be given to specify the maximum
size to read into the buffer. If omitted, an arbitrary size will fill the buffer, depending on the upstream
filter or handler. The print method passes data down to the next filter.

 file:MyApache/ROT13.pm

 package MyApache::ROT13;

 use strict;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::Filter ();

 use Apache::Const -compile => ’OK’;

 use constant BUFF_LEN => 1024;

 sub handler {
 my $filter = shift;

 while ($filter->read(my $buffer, BUFF_LEN)) {
 $buffer =~ y/A-Za-z/N-ZA-Mn-za-m/;
 $filter->print($buffer);
 }

 return Apache::OK;
 }
 1;

Let’s say that we want to encrypt the output of the registry scripts accessed through a /perl-rot13 location
using the rot13 algorithm. The following configuration section accomplishes that.

4116 Nov 2002

1.10.4��I/O Filtering PhasesThe Next Generation: mod_perl 2.0

 PerlModule MyApache::ROT13
 Alias /perl-rot13/ /home/httpd/perl/
 <Location /perl-rot13>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlOutputFilterHandler MyApache::ROT13
 Options +ExecCGI
 #PerlOptions +ParseHeaders
 </Location>

Now that you know how to write input and output filters, you can write a pair of filters that decode ROT13
input before the request processing starts and then encode the generated response back to ROT13 on the
way back to the client.

1.11��Migrating from mod_perl 1.0 to mod_perl 2.0
The following sections discuss what should be done in order to migrate services from mod_perl 1.0 to 2.0
and if possible making the new services based on mod_perl 2.0 back compatible with mod_perl 1.0.

Several configuration directives were renamed or removed. Several APIs have changed, renamed,
removed, or moved to new packages. Certain functions while staying exactly the same as in mod_perl 1.0,
now reside in different packages. Before using them you need to find out and load those new packages
containing them.

Since as of this writing mod_perl 2.0 wasn’t released yet, it’s possible that certain things have changed
after the document has been published. If something doesn’t work as explained here, please refer to the
documents in the mod_perl distribution or the online version at http://perl.apache.org/docs/2.0/ for the
updated documentation.

1.11.1��The Shortest Migration Path

mod_perl 2.0 provides two backwards-compatibility layers: one for the configuration files and the other
for the code. If you are concerned to preserve the backwards compatibility with mod_perl 1.0, or simply
want to try your services under mod_perl 2.0, simply enable the code compatibility layer by adding:

 use Apache2;
 use Apache::compat;

at the top of your startup file. The configuration backwards-compatibility is enabled by default.

1.11.2��Migrating Configuration Files

To migrate the configuration files to the mod_perl 2.0 syntax, you may need to do certain adjustments.
Several configuration directives are deprecated in 2.0, but still available for backwards compatibility with
mod_perl 1.0. If you don’t need the backwards compatibility consider using the directives that have
replaced them.

16 Nov 200242

Stas Bekman1.11��Migrating from mod_perl 1.0 to mod_perl 2.0

http://perl.apache.org/docs/2.0/

1.11.2.1��PerlHandler

PerlHandler was replaced with PerlResponseHandler.

1.11.2.2��PerlSendHeader

PerlSendHeader was replaced with PerlOptions +/-ParseHeaders directive.

 PerlSendHeader On => PerlOptions +ParseHeaders
 PerlSendHeader Off => PerlOptions -ParseHeaders

1.11.2.3��PerlSetupEnv

PerlSetupEnv was replaced with PerlOptions +/-SetupEnv directive.

 PerlSetupEnv On => PerlOptions +SetupEnv
 PerlSetupEnv Off => PerlOptions -SetupEnv

1.11.2.4��PerlTaintCheck

The tainting mode now can be turned on with:

 PerlSwitches -T

The default is Off. You cannot turn it Off once it’s turned On.

1.11.2.5��PerlWarn

Warnings now can be enabled globally with:

 PerlSwitches -w

1.11.2.6��PerlFreshRestart

PerlFreshRestart is a mod_perl 1.0 legacy and doesn’t exist in mod_perl 2.0. A full tear-down and
startup of interpreters is done on restart.

If you need to use the same httpd.conf for 1.0 and 2.0, use:

 <IfDefine !MODPERL2>
 PerlFreshRestart
 </IfDefine>

1.11.3��Code Porting

mod_perl 2.0 is trying hard to be back compatible with mod_perl 1.0. However some things (mostly APIs)
have been changed. In order to gain a complete compatibility with 1.0 while running under 2.0, you should
load the compatibility module as early as possible:

4316 Nov 2002

1.11.3��Code PortingThe Next Generation: mod_perl 2.0

 use Apache::compat;

at the server startup. And unless there are forgotten things or bugs, your code should work without any
changes under 2.0 series.

However, unless you want to keep the 1.0 compatibility, you should try to remove the compatibility layer
and adjust your code to work under 2.0 without it. You want to do it mainly for the performance improve-
ment. The online mod_perl documentation includes a document
(http://perl.apache.org/docs/2.0/user/compat/compat.html) that explains what APIs have changed and
what new APIs should be used instead.

If you have mod_perl 1.0 and 2.0 installed on the same system and the two use the same perl libraries
directory (e.g. /usr/lib/perl5), to use mod_perl 2.0 make sure to load first the Apache2 module which will
perform the necessary adjustments to @INC.

 use Apache2; # if you have 1.0 and 2.0 installed
 use Apache::compat;

So if before loading Apache2.pm the @INC array consisted of:

 /home/stas/perl/ithread/lib/5.8.0/i686-linux-thread-multi
 /home/stas/perl/ithread/lib/5.8.0
 /home/stas/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi
 /home/stas/perl/ithread/lib/site_perl/5.8.0
 /home/stas/perl/ithread/lib/site_perl
 .

It will now look as:

 /home/stas/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi/Apache2
 /home/stas/perl/ithread/lib/5.8.0/i686-linux-thread-multi
 /home/stas/perl/ithread/lib/5.8.0
 /home/stas/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi
 /home/stas/perl/ithread/lib/site_perl/5.8.0
 /home/stas/perl/ithread/lib/site_perl
 .

Notice that a new directory was prepended to the search path, so if for example the code attempts to load
Apache::RequestRec and there are two versions of this module undef
/home/stas/perl/ithread/lib/site_perl/:

 5.8.0/i686-linux-thread-multi/Apache/RequestRec.pm
 5.8.0/i686-linux-thread-multi/Apache2/Apache/RequestRec.pm

The mod_perl 2.0 version will be loaded first, because the directory
5.8.0/i686-linux-thread-multi/Apache2 is coming before the directory 5.8.0/i686-linux-thread-multi in
@INC.

16 Nov 200244

Stas Bekman1.11.3��Code Porting

http://perl.apache.org/docs/2.0/user/compat/compat.html

1.11.4��ModPerl::Registry Family

In mod_perl 2.0, Apache::Registry and friends (Apache::PerlRun, Apache::RegistryNG,
etc) have migrated into the ModPerl:: namespace. The new family is based on the idea of
Apache::RegistryNG from mod_perl 1.0, where you can customize pretty much all the functionality
by providing your own hooks. The functionality of the modules Apache::Registry,
Apache::RegistryBB and Apache::PerlRun hasn’t changed from the user’s perspective. All
these modules are derived from the Apache::RegistryCooker class. So if you want to change the
functionality of any of the existing sub-classes, or want to "cook" your own registry module it can be done
easily. Refer to the Apache::RegistryCooker manpage for more information.

Here is a typical registry section configuration in mod_perl 2.0:

 Alias /perl/ /home/httpd/perl/
 <Location /perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI
 PerlOptions +ParseHeaders
 </Location>

As we have explained earlier, the ParseHeaders option is needed if the headers are being sent via
print() (i.e. without using mod_perl API) and comes as a replacement for the PerlSendHeader option
in mod_perl 1.0.

Here is a simple registry script that prints the environment variables.

 file:print_env.pl

 print "Content-type: text/plain\n\n";
 for (sort keys %ENV){
 print "$_ => $ENV{$_}\n";
 }

Save the file in /home/httpd/perl/print_env.pl and make it executable:

 panic% chmod 0700 /home/stas/modperl/mod_perl_rules1.pl

Now issue a request to http://localhost/perl/print_env.pl and you should see all the environment variables
printed out.

The only change for registry scripts from mod_perl 1.0 is that Perl doesn’t chdir()’s into the script’s
directory before executing it. This is because chdir() is not a thread-safe function, and as you’ve
learned by now, mod_perl 2.0 should run properly in the threaded environment. To accommodate for this
change, the directory of the script is being pushed as the first element in @INC for the duration of the
script’s execution, so relative to the script’s directory require() calls will succeed. This however
doesn’t solve the problem for other operations like file open() calls, when a relative to the script’s direc-
tory path is used. In these cases the code needs to be changed to figure out the full path to the file at run
time.

4516 Nov 2002

1.11.4��ModPerl::Registry FamilyThe Next Generation: mod_perl 2.0

http://localhost/perl/print_env.pl

1.11.5��Method Handlers

In mod_perl 1.0 the method handlers could be specified by using the ($$) prototype:

 package Bird;
 @ISA = qw(Eagle);

 sub handler ($$) {
 my($class, $r) = @_;
 ...;
 }

Starting from Perl version 5.6, you can use subroutine attributes, and that’s what mod_perl 2.0 does
instead of conventional prototypes:

 package Bird;
 @ISA = qw(Eagle);

 sub handler : method {
 my($class, $r) = @_;
 ...;
 }

See the attributes manpage.

mod_perl 2.0 doesn’t support the ($$) prototypes, mainly because several callbacks in 2.0 have more
arguments than $r, so the ($$) prototype doesn’t make sense anymore. Therefore if you want your code
to work with both mod_perl generations, you should use the subroutine attributes.

1.11.6��Apache::StatINC Replacement

Apache::StatINC has been replaced by Apache::Reload, which works for both mod_perl genera-
tions. To migrate to Apache::Reload simply replace:

 PerlInitHandler Apache::StatINC

with:

 PerlInitHandler Apache::Reload

However Apache::Reload provides an extra functionality, covered in the module’s manpage.

1.12��Important Links
All the updated docs are at http://perl.apache.org/docs/

If you have any questions please ask at the mod_perl mailing list: modperl@perl.apache.org

16 Nov 200246

Stas Bekman1.12��Important Links

http://perl.apache.org/docs/

1.13��A shameless plug

4716 Nov 2002

1.13��A shameless plugThe Next Generation: mod_perl 2.0

Table of Contents:
......... 1Presentation Handouts: mod_perl 2.0, the Next Generation
.............. 2The Next Generation: mod_perl 2.0
............. 21�� The Next Generation: mod_perl 2.0
................... 31.1��About
.................. 31.2��Thank you!
............... 31.3��Versioning Convention
............ 31.4��Why mod_perl, the Next Generation
............. 41.4.1��The Apache::Test Framework
............... 41.5��What’s new in Apache 2.0
............. 101.6��What’s new in Perl 5.6.0 - 5.8.0
.............. 121.7��What’s new in mod_perl 2.0
................ 121.7.1��Threads Support
................ 131.7.2��Thread-safety
.......... 131.7.3��Perl interface to the APR and Apache APIs
............... 141.7.4��Other New Features
................ 141.7.5��Optimizations
............... 141.8��Installing mod_perl 2.0
............... 151.8.1��Installing from Source
............... 161.8.2��Installing Binaries
............... 181.9��Configuring mod_perl 2.0
........... 181.9.1��Accessing the mod_perl 2.0 Modules
................. 191.9.2��Startup File
............. 201.9.3��Perl’s Command Line Switches
............. 201.9.4��mod_perl 2.0 Core Handlers
................ 201.9.4.1��perl-script
................. 211.9.4.2��modperl
.......... 211.9.4.3��A Simple Response Handler Example
.............. 231.9.5��PerlOptions Directive
................. 231.9.5.1��Enable
................. 231.9.5.2��Clone
................. 241.9.5.3��Parent
............... 241.9.5.4��Perl*Handler
................ 251.9.5.5��AutoLoad
.............. 251.9.5.6��GlobalRequest
............... 261.9.5.7��ParseHeaders
.............. 261.9.5.8��MergeHandlers
................ 261.9.5.9��SetupEnv
............ 281.9.6��Threads Mode Specific Directives
.............. 281.9.6.1��PerlInterpStart
.............. 281.9.6.2��PerlInterpMax
............. 281.9.6.3��PerlInterpMinSpare
............. 281.9.6.4��PerlInterpMaxSpare
............ 281.9.6.5��PerlInterpMaxRequests
.............. 281.9.6.6��PerlInterpScope

i16 Nov 2002

Table of Contents:The Next Generation: mod_perl 2.0

............. 291.9.7��Retrieving Server Startup Options

........ 291.10��New Apache Phases and Corresponding Perl*Handlers

............ 291.10.1��Server Configuration (Startup) Phases

............. 301.10.1.1��PerlOpenLogsHandler

............ 311.10.1.2��PerlPostConfigHandler

................ 311.10.2��Connection Phases

........... 311.10.2.1��PerlPreConnectionHandler

.......... 321.10.2.2��PerlProcessConnectionHandler

........... 321.10.2.2.1��MyApache::Eliza Protocol Module

.......... 341.10.2.2.2��MyApache::Eliza2 Protocol Module

................. 361.10.3��Request Phases

................ 361.10.4��I/O Filtering Phases

............ 381.10.4.1��PerlInputFilterHandler

............ 411.10.4.2��PerlOutputFilterHandler

........... 421.11��Migrating from mod_perl 1.0 to mod_perl 2.0

.............. 421.11.1��The Shortest Migration Path

.............. 421.11.2��Migrating Configuration Files

................ 431.11.2.1��PerlHandler

............... 431.11.2.2��PerlSendHeader

............... 431.11.2.3��PerlSetupEnv

............... 431.11.2.4��PerlTaintCheck

................. 431.11.2.5��PerlWarn

.............. 431.11.2.6��PerlFreshRestart

................. 431.11.3��Code Porting

............. 451.11.4��ModPerl::Registry Family

................. 461.11.5��Method Handlers

............ 461.11.6��Apache::StatINC Replacement

.................. 461.12��Important Links

................. 471.13��A shameless plug

16 Nov 2002ii

Table of Contents:

		1��The Next Generation: mod_perl 2.0

		1.1��About

		1.2��Thank you!

		1.3��Versioning Convention

		1.4��Why mod_perl, the Next Generation

		1.4.1��The Apache::Test Framework

		1.5��What's new in Apache 2.0

		1.6��What's new in Perl 5.6.0 - 5.8.0

		1.7��What's new in mod_perl 2.0

		1.7.1��Threads Support

		1.7.2��Thread-safety

		1.7.3��Perl interface to the APR and Apache APIs

		1.7.4��Other New Features

		1.7.5��Optimizations

		1.8��Installing mod_perl 2.0

		1.8.1��Installing from Source

		1.8.2��Installing Binaries

		1.9��Configuring mod_perl 2.0

		1.9.1��Accessing the mod_perl 2.0 Modules

		1.9.2��Startup File

		1.9.3��Perl's Command Line Switches

		1.9.4��mod_perl 2.0 Core Handlers

		1.9.4.1��perl-script

		1.9.4.2��modperl

		1.9.4.3��A Simple Response Handler Example

		1.9.5��PerlOptions Directive

		1.9.5.1��Enable

		1.9.5.2��Clone

		1.9.5.3��Parent

		1.9.5.4��Perl*Handler

		1.9.5.5��AutoLoad

		1.9.5.6��GlobalRequest

		1.9.5.7��ParseHeaders

		1.9.5.8��MergeHandlers

		1.9.5.9��SetupEnv

		1.9.6��Threads Mode Specific Directives

		1.9.6.1��PerlInterpStart

		1.9.6.2��PerlInterpMax

		1.9.6.3��PerlInterpMinSpare

		1.9.6.4��PerlInterpMaxSpare

		1.9.6.5��PerlInterpMaxRequests

		1.9.6.6��PerlInterpScope

		1.9.7��Retrieving Server Startup Options

		1.10��New Apache Phases and Corresponding Perl*Handlers

		1.10.1��Server Configuration (Startup) Phases

		1.10.1.1��PerlOpenLogsHandler

		1.10.1.2��PerlPostConfigHandler

		1.10.2��Connection Phases

		1.10.2.1��PerlPreConnectionHandler

		1.10.2.2��PerlProcessConnectionHandler

		1.10.2.2.1��MyApache::Eliza Protocol Module

		1.10.2.2.2��MyApache::Eliza2 Protocol Module

		1.10.3��Request Phases

		1.10.4��I/O Filtering Phases

		1.10.4.1��PerlInputFilterHandler

		1.10.4.2��PerlOutputFilterHandler

		1.11��Migrating from mod_perl 1.0 to mod_perl 2.0

		1.11.1��The Shortest Migration Path

		1.11.2��Migrating Configuration Files

		1.11.2.1��PerlHandler

		1.11.2.2��PerlSendHeader

		1.11.2.3��PerlSetupEnv

		1.11.2.4��PerlTaintCheck

		1.11.2.5��PerlWarn

		1.11.2.6��PerlFreshRestart

		1.11.3��Code Porting

		1.11.4��ModPerl::Registry Family

		1.11.5��Method Handlers

		1.11.6��Apache::StatINC Replacement

		1.12��Important Links

		1.13��A shameless plug

