

ApacheCon US
April 4, 2001

Santa Clara, CA

Tutorial : Improv ing scripts and handlers performance
under mod_perl

by Stas Bekman
http://stason.org/

<stas@stason.org>
eXtropia.com, Senior Engineer

This talk is available from: http://stason.org/talks/

1 8 Mar 2001

Tutorial: Improving scripts and handlers performance under mod_perl

This document is originally written in POD, converted to HTML , PostScript and PDF by
Pod::HtmlP sPdf Perl module.

(you will find a Table of Contents at the end of the Tutorial)

 8 Mar 20012

Stas Bekman

1 Agenda

3 8 Mar 2001

1 Agendamod_perl Tutorial: Agenda

1.1 Agenda
I will start the presentation with a very basic introduction into mod_perl, 10 lines installation
instructions, a simple configuration and a few code examples. These should help you get your
feet wet if you are really new to mod_perl.

Afterwards I’ll talk about boosting a performance of web applications working with RDBMS
databases under mod_perl. We will see what modules allow us to make the work with database
faster.

Finally we will see some performance improvement tips, these should get you programmers
produce more efficient code. We will how one should measure performance and DO’s and
DON’T’s to make the code run faster and use less memory.

The is one more section left for the post-conference reading. It includes additional information
about mod_perl and related products and resources. You should use it to find the answer to the
questions that you might need to get answered, on your way to becoming a mod_perl guru or
when you need some general help.

;o)

 8 Mar 20014

Stas Bekman1.1 Agenda

2 Getting Started Fast

5 8 Mar 2001

2 Getting Started Fastmod_perl Tutorial: Getting Started Fast

2.1 mod_perl in Four Slides
Each tutorial will concentrate on different aspects of running a mod_perl server and mod_perl
programming. In case you don’t know how to get started with it, or you think it’s a diffi cult task, these
slides will take away any worries you might have had when you came to this tutorial.

In just four slides you will be able to install and configure a mod_perl server. And, of course, to write
new code and reuse the existing code under mod_perl.

The four slides (sections) are:

Installation

Configuration

The ‘‘mod_perl rules’’ Apache::Registry Scripts

The ‘‘mod_perl rules’’ Apache Perl Module

2.2 What is mod_perl?
But before we go any further, there is a chance that you don’t know what mod_perl is. So let’s make a
little introduction to mod_perl.

Everybody knows that Perl scripts running under mod_cgi have numerous shortcomings. There are
many of them, but code recompilation and Perl interpreter loading overhead at each request is the
hardest one to overcome.

Among various attempts to improve on mod_cgi’s shortcomings, mod_perl has proved to be one of
the better ones and has been widely adopted by CGI developers. According to the
http://perl.apache.org/netcraft/ as of January 2001 about 2 million hosts use mod_perl. Doug
MacEachern fathered the core code of this Apache module and licensed it under the Apache Software
License.

mod_perl does away with mod_cgi’s forking by reusing the existing child processes. In this new
model, the child process doesn’t exit anymore when it has processed a request. The Perl interpreter is
loaded only once, when the process is started. Since the interpreter is persistent throughout the
process’ lifetime, all code is loaded and compiled only once, the first time it is seen. This makes all
subsequent requests run much faster because everything is already loaded and compiled. Response
processing is now reduced to running your code. This improves response times by a factor of 10 to
100, depending on the code being executed.

Doug didn’t stop here, he went and extended mod_cgi’s functionality by adding a complete Perl API
to the Apache core. This makes it possible to write a complete Apache module in Perl, a feat that used
to require coding in C. From then on mod_perl enabled the programmer to handle all phases of request
processing in Perl.

The new Perl API also allows complete server configuration in Perl. This has which made the lives of
many server administrators much easier, as they could now benefit from dynamically generating the
configuration, freed from hunting for bugs in huge configuration files full of similar directives for
virtual hosts and the like.

 8 Mar 20016

Stas Bekman2.1 mod_perl in Four Slides

http://perl.apache.org/netcraft/

To provide backwards compatibility for plain CGI scripts that used to be run under mod_cgi, while
still benefit ing from a preloaded perl and modules, a few special handlers were written, each allowing
a different level of proximity to pure mod_perl functionality. Some take full advantage of mod_perl,
while others only a partial one.

mod_perl embeds a copy of the Perl interpreter into the Apache httpd executable, providing complete
access to Perl functionality within Apache. This enables a set of mod_perl-specific configuration
directives, all of which start with the string Perl*. Most, but not all, of these directives are used to
specify handlers for various phases of the request.

It might occur to you that sticking a large executable (Perl) into another large executable (Apache)
makes a very, very large program. mod_perl certainly makes httpd significantly bigger and you will
need more RAM on your production server to be able to run many mod_perl processes, but in reality
the situation is different. Since mod_perl processes requests much faster, the number of the processes
needed to handle the same request rate is much lower relative to the mod_cgi approach. Generally you
need slightly more memory available, and the speed improvements you will see are well worth every
megabyte of memory you can add.

Now let’s get back to the All-In-Four-Slides...

2.3 Installation
Did you know that it takes about 10 minutes to build and install a mod_perl enabled Apache server on
a computer with a pretty average processor and a decent amount of system memory? It goes like this:

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
 % tar xzvf apache_x.x.x.tar.gz
 % tar xzvf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

That’s all!

Of course you must replace x.x.x with the actual version numbers of the mod_perl and Apache
releases that you use.

The GNU tar utility knows how to uncompress a gzipped tar archive (use the z option).

All that’s left is to add a few configuration lines to a httpd.conf, an Apache configuration file, start the
server and enjoy mod_perl.

7 8 Mar 2001

2.3 Installationmod_perl Tutorial: Getting Started Fast

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
http://www.apache.org/dist/apache_x.x.x.tar.gz

2.4 Configuration
Add the following to the configuration file httpd.conf:

 # for Apache::Registry mode
 Alias /perl/ /home/httpd/perl/

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes every URI starting with /perl to be handled by the Apache mod_perl
module. It will use the handler from the Perl module Apache::Registry .

2.5 The "mod_perl rules" Apache::Registry Scripts
You can write plain perl/CGI scripts just as under mod_cgi:

 mod_perl_rules1.pl

 print "Content-type: text/plain\r\n\r\n";
 print "mod_perl rules!\n";

Of course you can write them in the Apache Perl API:

 mod_perl_rules2.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);
 $r->print("mod_perl rules!\n");

Save both files under the /home/httpd/perl directory, make them executable and readable by server,
and issue these requests using your favorite browser:

 http://localhost/perl/mod_perl_rules1.pl
 http://localhost/perl/mod_perl_rules2.pl

In both cases you will see on the following response:

 mod_perl rules!

 8 Mar 20018

Stas Bekman2.4 Configuration

http://localhost/perl/mod_perl_rules2.pl
http://localhost/perl/mod_perl_rules1.pl

2.6 The "mod_perl rules" Apache Perl Module
To create an Apache Perl module, all you have to do is to wrap the code into a handler subroutine
and return the status to the server.

 ModPerl/Rules.pm

 package ModPerl::Rules;
 use Apache::Constants;

 sub handler{
 my $r = shift;
 $r->send_http_header(’text/plain’);
 print "mod_perl rules!\n";
 return OK;
 }
 1;

Create a directory called ModPerl under one of the directories in @INC, and put Rules.pm into it. Then
add the following snippet to httpd.conf:

 PerlModule ModPerl::Rules
 <Location /mod_perl_rules>
 SetHandler perl-script
 PerlHandler ModPerl::Rules
 </Location>

Now you can issue a request to:

 http://localhost/mod_perl_rules

and just as with our mod_perl_rules.pl scripts you will see:

 mod_perl rules!

as the response.

2.7 Is That All I Need To Know About mod_perl?
Definitely not!

These slides are intended to show you that you can install and start using a mod_perl server within 30
minutes of downloading the sources.

There is much more to mod_perl than this, you will need to plan your study around the projects you
want to implement. Fortunately, there are many resources and lots of help freely available to you.

At the end of this titorial you will find a chapter describing the available resources and pointers to
them.

9 8 Mar 2001

2.6 The "mod_perl rules" Apache Perl Modulemod_perl Tutorial: Getting Started Fast

http://localhost/mod_perl_rules

;o)

 8 Mar 200110

Stas Bekman2.7 Is That All I Need To Know About mod_perl?

3 RDBMS and mod_perl

11 8 Mar 2001

3 RDBMS and mod_perlmod_perl Tutorial: RDBMS and mod_perl

3.1 Apache::DBI - Initi ate a persistent database connec-
tion
When people started to use the web, they found that they needed to write web interfaces to their
databases. CGI is the most widely used technology for building such interfaces. The main limi tation of
a CGI script driving a database is that its database connection is not persistent - on every request the
CGI script has to re-connect to the database, and when the request is completed the connection is
closed.

Apache::DBI was written to remove this limi tation. When you use it, you have a database connec-
tion which persists for the process’ entire life. So when your mod_perl script needs to use a database,
Apache::DBI provides a valid connection immediately and your script starts work right away
without having to initiate a database connection first.

This is possible only with CGI running under a mod_perl enabled server, since in this model the child
process does not quit when the request has been served.

It’s almost as straightforward as is it sounds; there are just a few things to know about and we will
cover them in this section.

3.1.1 Introduction

The DBI module can make use of the Apache::DBI module. When it loads, the DBI module tests if
the environment variable $ENV{MOD_PERL} is set, and if the Apache::DBI module has already
been loaded. If so, the DBI module will forward every connect() request to the Apache::DBI
module. Apache::DBI uses the ping() method to look for a database handle from a previous
connect() request, and tests if this handle is still valid. If these two conditions are fulfilled it just
returns the database handle.

If there is no appropriate database handle or if the ping() method fails, Apache::DBI establishes
a new connection and stores the handle for later re-use. When the script is run again by a child that is
still connected, Apache::DBI just checks the cache of open connections by matching the host, user-
name and password parameters against it. A matching connection is returned if available or a new one
is initiated and then returned.

There is no need to delete the discon nect () statements from your code. They won’t do anything
because the Apache::DBI module overloads the discon nect () method with an empty one.

When should this module be used and when shouldn’t it be used?

You will want to use this module if you are opening several database connections to the server.
Apache::DBI will make them persistent per child, so if you have ten children and each opens two
different connections (with different connect() arguments) you will have in total twenty opened
and persistent connections. After the initial connect() you will save the connection time for every
connect() request from your DBI module. This can be a huge benefit for a server with a high
volume of database traffic.

You must not use this module if you are opening a special connection for each of your users. Each
connection will stay persistent and in a short time the number of connections will be so big that your
machine will scream in agony and die.

 8 Mar 200112

Stas Bekman3.1 Apache::DBI - Initiate a persistent database connection

If you want to use Apache::DBI but you have both situations on one machine, at the time of writing
the only solution is to run two Apache/mod_perl servers, one which uses Apache::DBI and one
which does not.

3.1.2 Configuration

After installing this module, the configuration is simple - add the following directive to httpd.conf

 PerlModule Apache::DBI

Note that it is important to load this module before any other Apache*DBI module and before the
DBI module itself!

You can skip preloading DBI , since Apache::DBI does that. But there is no harm in leaving it in, as
long as it is loaded after Apache::DBI .

3.1.3 Preopening DBI connections

If you want to make sure that a connection will already be opened when your script is first executed
after a server restart, then you should use the connect_on_init() method in the startup file to
preload every connection you are going to use. For example:

 Apache::DBI->connect_on_init
 ("DBI:mysql:myDB::myserver",
 "username",
 "passwd",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

As noted above, use this method only if you want all of apache to be able to connect to the database
server as one user (or as a very few users), i.e. if your user(s) can effectively share the connection.
Do not use this method if you want for example one unique connection per user.

Be warned though, that if you call connect_on_init() and your database is down, Apache chil-
dren will be delayed at server startup, trying to connect. They won’t begin serving requests until either
they are connected, or the connection attempt fails. Depending on your DBD driver, this can take
several minutes!

3.1.4 Debugging Apache::DBI

If you are not sure if this module is working as advertised, you should enable Debug mode in the
startup script by:

 $Apache::DBI::DEBUG = 1;

13 8 Mar 2001

3.1.2 Configurationmod_perl Tutorial: RDBMS and mod_perl

Starting with ApacheDBI-0.84 , setting $Apache::DBI::DEBUG = 1 will produce only
minimal output. For a full trace you should set $Apache::DBI::DEBUG = 2.

After setting the DEBUG level you will see entries in the error_log both when Apache::DBI
initializes a connection and when it returns one from its cache. Use the following command to view
the log in real time (your error_log might be located at a different path, it is set in the Apache
configuration files):

 tail -f /usr/local/apache/logs/error_log

I use alias (in tcsh) so I do not have to remember the path:

 alias err "tail -f /usr/local/apache/logs/error_log"

3.1.5 Opening connections with different parameters

When it receives a connection request, before it decides to use an existing cached connection,
Apache::DBI insists that the new connection be opened in exactly the same way as the cached
connection. If I have one script that sets LongReadLen and one that does not, Apache::DBI will
make two different connections. So instead of having a maximum of 40 open connections, I can end
up with 80.

However, you are free to modify the handle immediately after you get it from the cache. So always
initiate connections using the same parameters and set LongReadLen (or whatever) afterwards.

3.1.6 Caching prepare() Statements

You can also benefit from persistent connections by replacing prepare() with
prepare_cached(). That way you will always be sure that you have a good statement handle and
you will get some caching benefit. The downside is that you are going to pay for DBI to parse your
SQL and do a cache lookup every time you call prepare_cached().

Be warned that some databases (e.g PostgreSQL and Sybase) don’t support caches of prepared plans.
With Sybase you could open multiple connections to achieve the same result, although this is at the
risk of getting deadlocks depending on what you are trying to do!

;o)

 8 Mar 200114

Stas Bekman3.1.5 Opening connections with different parameters

4 Performance Tuning

15 8 Mar 2001

4 Performance Tuningmod_perl Tutorial: Performance Tuning

4.1 What we will learn in this chapter
The Big Picture

Essential Tools

Choosing MaxClients

KeepAlive

PerlSetupEnv Off

Reducing the Number of stat() Calls Made by Apache

Cached stat() Calls by Perl

Limit ing the Size of the Processes

Sharing Memory

How Shared My Memory Is

Preload Perl modules at server startup

Preload Registry Scripts

Some numbers: Initializing DBI.pm

Keeping the Shared Memory Limit

Limit ing the Resources Used by httpd Children

Upload/Download of Big Files

Global vs Fully Qualified Variables

Forking or Executing subprocesses from mod_perl

Using $|=1 under mod_perl and better print() techniques.

Sending plain HTML as a compressed output

4.2 The Big Picture
To make the user’s Web browsing experience as painless as possible, every effort must be made to
wring the last drop of performance from the server. There are many factors which affect Web site
usability, but speed is one of the most important. This applies to any webserver, not just Apache, and
it is very important for you to understand it.

How do we measure the speed of a server? Since the user (and not the computer) is the one that inter-
acts with the Web site, one good speed measurement is the time elapsed between the moment when
she clicks on a link or presses a Submit button to the moment when the resulting page is rendered
complete.

 8 Mar 200116

Stas Bekman4.1 What we will learn in this chapter

The requests and replies are broken into packets. A request may be made up of several packets, a reply
may be many thousands. Each packet has to make its own way from one machine to another, perhaps
passing through many interconnection nodes. We must measure the time starting from when the first
packet of the request leaves our user’s machine to when the last packet of the reply arrives back there.

A webserver is only one of the elements the packets see along their way. If we follow them from
browser to server and back again, they may travel by different routes through many different entities.
Before they are processed by your server the packets might have to go through proxy (accelerator)
servers and if the request contains more than one packet they will all have to wait for the last one so
that the full request message can be reassembled at the server. Then the whole process is repeated in
reverse.

You could work hard to fine tune your webserver’s performance, but a slow Network Interface Card
(NIC) or a slow network connection from your server might defeat it all. That’s why it’s important to
think about the Big Picture and to be aware of possible bottlenecks between the server and the Web.
Of course there is little that you can do if the user has a slow connection.

You might tune your scripts and webserver to process incoming requests ultra fast, so you will need
only a small number of working servers, but you might find that the server processes are all busy
waiting for slow clients to accept their responses. You will see more examples in this chapter.

A Web service is like a car, if one of the parts or mechanisms is broken the car may not go smoothly
and it can even stop dead if pushed too far without first fixing it.

4.3 Essential Tools
In order to improve performance we need measurement tools. We use benchmarking for this purpose.
We can benchmark the code and we can benchmark the response time which in addition to the code
execution measures the request arrival and response delivery time amongst other things.

4.3.1 Benchmarking Perl Code

If you are going to write your own benchmarking utility, use the Bench mark module and the
Time::HiRes module where you need better time precision (<10msec).

An example of the Bench mark .pm module usage:

 benchmark.pl

 use Benchmark;

 timethis (1_000,
 sub {
 my $x = 100;
 my $y = log ($x ** 100) for (0..10000);
 });

 % perl benchmark.pl
 timethis 1000: 25 wallclock secs (24.93 usr + 0.00 sys = 24.93 CPU)

17 8 Mar 2001

4.3 Essential Toolsmod_perl Tutorial: Performance Tuning

An example of the Time::HiRes module usage:

 hi-res.pl

 use Time::HiRes qw(gettimeofday tv_interval);
 sub sub_that_takes_a_teeny_bit_of_time{1+1;};
 my $start_time = [gettimeofday];
 &sub_that_takes_a_teeny_bit_of_time();
 my $end_time = [gettimeofday];
 my $elapsed = tv_interval($start_time,$end_time);
 print "The sub took $elapsed seconds.\n"

 % perl hi-res.pl
 The sub took 0.000262 seconds.

4.3.2 Benchmarking Response Times

To measure response times all we need is a client that will generate parallel requests, process the
responses and print the results of the test. You can use either an existing tool that performs this task or
you can develop your own.

4.3.2.1 ApacheBench

From existing tools you can try ApacheBench (ab) that comes bundled with Apache source distribu-
tion. It is designed to give you an idea of the performance that your current Apache installation can
give. In particular, it shows you how many requests per second your Apache server is capable of
serving.

Let’s try it. We will simulate 10 users concurrently requesting a very light script at
www.example.com:81/test/test.pl . Each simulated user makes 10 requests.

 % ./ab -n 100 -c 10 www.example.com:81/test/test.pl

The results are:

 Document Path: /perl/test.pl
 Document Length: 319 bytes

 Concurrency Level: 10
 Time taken for tests: 0.715 seconds
 Complete requests: 100
 Failed requests: 0
 Total transferred: 60700 bytes
 HTML transferred: 31900 bytes
 Requests per second: 139.86
 Transfer rate: 84.90 kb/s received

 Connection Times (ms)
 min avg max
 Connect: 0 0 3
 Processing: 13 67 71
 Total: 13 67 74

 8 Mar 200118

Stas Bekman4.3.2 Benchmarking Response Times

4.3.2.2 httperf

httperf is a utility written by David Mosberger. Just like ApacheBench, it measures the performance of
the webserver.

A sample command line is shown below:

 % httperf --server hostname --port 80 --uri /test.html \
 --rate 150 --num-conn 27000 --num-call 1 --timeout 5

This command causes httperf to use the web server on the host with IP name hostname, running at
port 80. The web page being retrieved is /test.html and, in this simple test, the same page is retrieved
repeatedly. The rate at which requests are issued is 150 per second. The test involves initiating a total
of 27,000 TCP connections and on each connection one HTTP call is performed. A call consists of
sending a request and receiving a reply.

The timeout option defines the number of seconds that the client is willing to wait to hear back from
the server. If this timeout expires, the tool considers the corresponding call to have failed. Note that
with a total of 27,000 connections and a rate of 150 per second, the total test duration will be approxi-
mately 180 seconds (27,000/150), independent of what load the server can actually sustain. Here is a
result that one might get:

 Total: connections 27000 requests 26701 replies 26701 test-duration 179.996 s

 Connection rate: 150.0 conn/s (6.7 ms/conn, <=47 concurrent connections)
 Connection time [ms]: min 1.1 avg 5.0 max 315.0 median 2.5 stddev 13.0
 Connection time [ms]: connect 0.3

 Request rate: 148.3 req/s (6.7 ms/req)
 Request size [B]: 72.0

 Reply rate [replies/s]: min 139.8 avg 148.3 max 150.3 stddev 2.7 (36 samples)
 Reply time [ms]: response 4.6 transfer 0.0
 Reply size [B]: header 222.0 content 1024.0 footer 0.0 (total 1246.0)
 Reply status: 1xx=0 2xx=26701 3xx=0 4xx=0 5xx=0

 CPU time [s]: user 55.31 system 124.41 (user 30.7% system 69.1% total 99.8%)
 Net I/O: 190.9 KB/s (1.6*10^6 bps)

 Errors: total 299 client-timo 299 socket-timo 0 connrefused 0 connreset 0
 Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

4.3.3 Using LWP::Parallel::UserAgent

You can use LWP::Paral lel ::User Agent to write your own bechmarking utility.

This is another crashme suite originally written by Michael Schilli (and used to be located at
http://www.linux-magazin.de/ausgabe.1998.08/Pounder/pounder.html, but it’s has gone). I made a few
modifications, mostly adding my() operators. I also allowed it to accept more than one url to test,
since sometimes you want to test more than one script.

The tool provides the same results as ab above but it also allows you to set the timeout value, so
requests will fail if not served within the time out period. You also get values for Latency (seconds
per request) and Throughput (requests per second). It can do a complete simulation of your favorite

19 8 Mar 2001

4.3.3 Using LWP::Parallel::UserAgentmod_perl Tutorial: Performance Tuning

http://www.linux-magazin.de/ausgabe.1998.08/Pounder/pounder.html

Netscape browser :) and give you a better picture.

I have noticed while running these two benchmarking suites, that ab gave me results from two and a
half to three times better. Both suites were run on the same machine, with the same load and the same
parameters, but the implementations were different.

Sample output:

 URL(s): http://www.example.com:81/perl/access/access.cgi
 Total Requests: 100
 Parallel Agents: 10
 Succeeded: 100 (100.00%)
 Errors: NONE
 Total Time: 9.39 secs
 Throughput: 10.65 Requests/sec
 Latency: 0.85 secs/Request

And the code:

 8 Mar 200120

Stas Bekman4.3.3 Using LWP::Parallel::UserAgent

http://www.example.com:81/perl/access/access.cgi

 #!/usr/apps/bin/perl -w

 use LWP::Parallel::UserAgent;
 use Time::HiRes qw(gettimeofday tv_interval);
 use strict;

 ###
 # Configuration
 ###

 my $nof_parallel_connections = 10;
 my $nof_requests_total = 100;
 my $timeout = 10;
 my @urls = (
 ’ http://www.example.com:81/perl/faq_manager/faq_manager.pl ’,
 ’ http://www.example.com:81/perl/access/access.cgi ’,
);

 ##
 # Derived Class for latency timing
 ##

 package MyParallelAgent;
 @MyParallelAgent::ISA = qw(LWP::Parallel::UserAgent);
 use strict;

 ###
 # Is called when connection is opened
 ###
 sub on_connect {
 my ($self, $request, $response, $entry) = @_;
 $self->{__start_times}->{$entry} = [Time::HiRes::gettimeofday];
 }

 ###
 # Are called when connection is closed
 ###
 sub on_return {
 my ($self, $request, $response, $entry) = @_;
 my $start = $self->{__start_times}->{$entry};
 $self->{__latency_total} += Time::HiRes::tv_interval($start);
 }

 sub on_failure {
 on_return(@_); # Same procedure
 }

 ###
 # Access function for new instance var
 ###
 sub get_latency_total {
 return shift->{__latency_total};
 }

21 8 Mar 2001

4.3.3 Using LWP::Parallel::UserAgentmod_perl Tutorial: Performance Tuning

http://www.example.com:81/perl/access/access.cgi
http://www.example.com:81/perl/faq_manager/faq_manager.pl

 ##
 package main;
 ##
 ###
 # Init parallel user agent
 ###
 my $ua = MyParallelAgent->new();
 $ua->agent("pounder/1.0");
 $ua->max_req($nof_parallel_connections);
 $ua->redirect(0); # No redirects

 ###
 # Register all requests
 ###
 foreach (1..$nof_requests_total) {
 foreach my $url (@urls) {
 my $request = HTTP::Request->new(’GET’, $url);
 $ua->register($request);
 }
 }

 ###
 # Launch processes and check time
 ###
 my $start_time = [gettimeofday];
 my $results = $ua->wait($timeout);
 my $total_time = tv_interval($start_time);

 ###
 # Requests all done, check results
 ###

 my $succeeded = 0;
 my %errors = ();

 foreach my $entry (values %$results) {
 my $response = $entry->response();
 if($response->is_success()) {
 $succeeded++; # Another satisfied customer
 } else {
 # Error, save the message
 $response->message("TIMEOUT") unless $response->code();
 $errors{$response->message}++;
 }
 }

 8 Mar 200122

Stas Bekman4.3.3 Using LWP::Parallel::UserAgent

 ###
 # Format errors if any from %errors
 ###
 my $errors = join(’,’, map "$_ ($errors{$_})", keys %errors);
 $errors = "NONE" unless $errors;

 ###
 # Format results
 ###

 #@urls = map {($_,".")} @urls;
 my @P = (
 "URL(s)" => join("\n\t\t ", @urls),
 "Total Requests" => "$nof_requests_total",
 "Parallel Agents" => $nof_parallel_connections,
 "Succeeded" => sprintf("$succeeded (%.2f%%)\n",
 $succeeded * 100 / $nof_requests_total),
 "Errors" => $errors,
 "Total Time" => sprintf("%.2f secs\n", $total_time),
 "Throughput" => sprintf("%.2f Requests/sec\n",
 $nof_requests_total / $total_time),
 "Latency" => sprintf("%.2f secs/Request",
 ($ua->get_latency_total() || 0) /
 $nof_requests_total),
);

 my ($left, $right);
 ###
 # Print out statistics
 ###
 format STDOUT =
 @<<<<<<<<<<<<<<< @*
 "$left:", $right
 .

 while(($left, $right) = splice(@P, 0, 2)) {
 write;
 }

4.4 Choosing MaxClients
The MaxClients directive sets the limit on the number of simultaneous requests that can be
supported. No more than this number of child server processes will be created. To configure more than
256 clients, you must edit the HARD_SERVER_LIMIT entry in httpd.h and recompile. In our case
we want this variable to be as small as possible, because in this way we can limit the resources used
by the server children. Since we can restrict each child’s process size, the calculation of
MaxClients is pretty straightforward:

 Total RAM Dedicated to the Webserver
 MaxClients = ------------------------------------
 MAX child’s process size

So if I have 400Mb left for the webserver to run with, I can set MaxClients to be of 40 if I know
that each child is limited to 10Mb of memory (e.g. with Apache::Size Limit).

23 8 Mar 2001

4.4 Choosing MaxClientsmod_perl Tutorial: Performance Tuning

You will be wondering what will happen to your server if there are more concurrent users than
MaxClients at any time. This situation is accompanied by the following warning message in the
error_log :

 [Sun Jan 24 12:05:32 1999] [error] server reached MaxClients setting,
 consider raising the MaxClients setting

There is no problem -- any connection attempts over the MaxClients limit will normally be queued,
up to a number based on the Listen Back log directive. When a child process is freed at the end of
a different request, the connection will be served.

It is an error because clients are being put in the queue rather than getting served immediately,
despite the fact that they do not get an error response. The error can be allowed to persist to balance
available system resources and response time, but sooner or later you will need to get more RAM so
you can start more child processes. The best approach is to try not to have this condition reached at all,
and if you reach it often you should start to worry about it.

It’s important to understand how much real memory a child occupies. Your children can share
memory between them when the OS supports that. You must take action to allow the sharing to
happen. If you do this, the chances are that your MaxClients can be even higher. But it seems that
it’s not so simple to calculate the absolute number. If you come up with solution please let us know! If
the shared memory was of the same size throughout the child’s life, we could derive a much better
formula:

 Total_RAM + Shared_RAM_per_Child * (MaxClients - 1)
 MaxClients = ---
 Max_Process_Size

which is:

 Total_RAM - Shared_RAM_per_Child
 MaxClients = ---------------------------------------
 Max_Process_Size - Shared_RAM_per_Child

Let’s roll some calculations:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 4Mb

 500 - 4
 MaxClients = --------- = 82
 10 - 4

With no sharing in place

 500
 MaxClients = --------- = 50
 10

 8 Mar 200124

Stas Bekman4.4 Choosing MaxClients

With sharing in place you can have 64% more servers without buying more RAM.

If you improve sharing and keep the sharing level, let’s say:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 8Mb

 500 - 8
 MaxClients = --------- = 246
 10 - 8

392% more servers! Now you can feel the importance of having as much shared memory as possible.

4.5 KeepAlive
If your mod_perl server’s httpd.conf includes the following directives:

 KeepAlive On
 MaxKeepAliveRequests 100
 KeepAliveTimeout 15

you have a real performance penalty, since after completing each request processing, the process will
wait for KeepAlive Time out seconds before closing the connection and thus not serving other
requests at this time. With this configuration you will need many more concurrent processes on a
server with high traffic.

If you use some server status reporting tools, you will see the process in K status when it’s in
KeepAlive status.

The chances are that you don’t want this feature enabled. Set it Off with:

 KeepAlive Off

the other two directives don’t matter if KeepAlive is Off .

You might want to consider enabling this option if the client’s browser needs to request more than one
object from your server for a single HTML page. If this is the situation then by setting KeepAlive
Off for each page you save the HTTP connection overhead for all requests but the first one.

For example if you have a page with 10 ad banners, which is not uncommon today, you server will
work more effectively if a single process serves them all during a single connection. However, your
client will see a slightly slower response, since banners will be brought one at a time and not concur-
rently as is the case if each IMG tag opens a separate connection.

Since keepalive connections will not incur the additional three-way TCP handshake, turning it off will
be kinder to the network.

25 8 Mar 2001

4.5 KeepAlivemod_perl Tutorial: Performance Tuning

SSL connections benefit the most from KeepAlive in case you didn’t configure the server to cache
session ids.

You have probably followed the advice to send all the requests for static objects to a plain Apache
server. Since most pages include more than one unique static image, you should keep the default
KeepAlive setting of the non-mod_perl server, i.e. keep it On. It will probably be a good idea also
to reduce the timeout a little.

One option would be for the proxy/accelerator to keep the connection open to the client but make indi-
vidual connections to the server, read the response, buffer it for sending to the client and close the
server connection. Obviously you would make new connections to the server as required by the
client’s requests.

Also you should know that KeepAlive requests only work with responses that contain a
Content-Length header. To send this header do:

 $r->header_out(’Content-Length’, $length);

4.6 PerlSetupEnv Off
PerlSe tu pEnv Off is another optimization you might consider.

mod_perl fiddles with the environment to make it appear as if the script were being called under the
CGI protocol. For example, the $ENV{QUERY_STRING} environment variable is initialized with the
contents of Apache::args(), and the value returned by Apache::server_hostname() is put into
$ENV{SERVER_NAME}.

But %ENV population is expensive. Those who have moved to the Perl Apache API no longer need
this extra %ENV population, can gain by turning it Off .

By default it is On.

Note that you can still set enviroment variables. For example when you use the following configura-
tion:

 <Location /perl>
 SetHandler perl-script
 PerlHandler +Apache::RegistryNG

 PerlSetupEnv Off
 PerlSetEnv TEST hi

 Options +ExecCGI
 </Location>

and you issue a request (for example http://localhost/perl/setupenvoff.pl) for this script:

 8 Mar 200126

Stas Bekman4.6 PerlSetupEnv Off

http://localhost/perl/setupenvoff.pl

 setupenvoff.pl

 use Data::Dumper;
 my $r = Apache->request();
 $r->send_http_header(’text/plain’);
 print Dumper(\%ENV);

you should see something like this:

 $VAR1 = {
 ’GATEWAY_INTERFACE’ => ’CGI-Perl/1.1’,
 ’MOD_PERL’ => ’mod_perl/1.25’,
 ’PATH’ => ’/usr/lib/perl5/5.6.1:... snipped ...’,
 ’TEST’ => ’hi’
 };

Notice that we have gotten the environment variable TEST set.

4.7 Reducing the Number of stat() Calls Made by Apache
If you watch the system calls that your server makes (using truss or strace while processing a request,
you will notice that many stat() calls are made. For example when I fetch http://local-
host/perl-status and I have my DocRoot set to /home/httpd/docs I see:

 [snip]
 stat("/home/httpd/docs/perl-status", 0xbffff8cc) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs", {st_mode=S_IFDIR|0755,
 st_size=1024, ...}) = 0
 [snip]

If you have some dynamic content and your virtual relative URI is something like
/news/perl/mod_perl/summary (i.e., there is no such directory on the web server, the path components
are only used for requesting a specific report), this will generate five(!) stat() calls, before the
Document Root is found. You will see something like this:

 stat("/home/httpd/docs/news/perl/mod_perl/summary", 0xbffff744) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs/news/perl/mod_perl", 0xbffff744) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs/news/perl", 0xbffff744) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs/news", 0xbffff744) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0

You can blame the default installed Tran sHandler for this inefficiency. Of course you could
supply your own, which will be smart enough not to look for this virtual path and immediately return
OK. But in cases where you have a virtual host that serves only dynamically generated documents, you
can override the default Perl Tran sHandler with this one:

27 8 Mar 2001

4.7 Reducing the Number of stat() Calls Made by Apachemod_perl Tutorial: Performance Tuning

http://localhost/perl-status
http://localhost/perl-status

 <VirtualHost 10.10.10.10:80>
 ...
 PerlTransHandler Apache::OK
 ...
 </VirtualHost>

As you see it affects only this specific virtual host.

This has the effect of short circuiting the normal Tran sHandler processing of trying to find a
filesystem component that matches the given URI -- no more ’stat’s!

Watching your server under strace/truss can often reveal more performance hits than trying to opti-
mize the code itself!

For example you have AllowOver ride None directive, Apache will look for the .htaccess file in
many places, if you don’t have one, and add many open() calls.

Let’s start with this simple configuration, and will try to reduce the number of irrelevant system calls.

 DocumentRoot "/home/httpd/docs"
 <Location /foo/test>
 SetHandler perl-script
 PerlHandler Apache::Foo
 </Location>

The above configuration allows us ot make a request to /foo/test and the Perl handler() defined in
Apache::Foo will be executed. Notice that in the test setup there is no file to be executed (like in
Apache::Registry). There is no .htaccess file as well.

This is a typical generated trace.

 stat("/home/httpd/docs/foo/test", 0xbffff8fc) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs/foo", 0xbffff8fc) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
 open("/.htaccess", O_RDONLY) = -1 ENOENT
 (No such file or directory)
 open("/home/.htaccess", O_RDONLY) = -1 ENOENT
 (No such file or directory)
 open("/home/httpd/.htaccess", O_RDONLY) = -1 ENOENT
 (No such file or directory)
 open("/home/httpd/docs/.htaccess", O_RDONLY) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs/test", 0xbffff774) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0

Now we modify the <Direc tory > entry and add AllowOverride None, which among other things
disables .htaccess files and will not try to open them.

 8 Mar 200128

Stas Bekman4.7 Reducing the Number of stat() Calls Made by Apache

 <Directory />
 AllowOverride None
 </Directory>

We see that the four open() calls for .htaccess have gone.

 stat("/home/httpd/docs/foo/test", 0xbffff8fc) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs/foo", 0xbffff8fc) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
 stat("/home/httpd/docs/test", 0xbffff774) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0

Let’s try to shortcut the foo location with:

 Alias /foo /

Which makes Apache to look for the file in the / directory and not under /home/httpd/docs/foo. Let’s
run it:

 stat("//test", 0xbffff8fc) = -1 ENOENT (No such file or directory)

Wow, we’ve got only one stat call left!

Let’s remove the last Alias setting and use:

 PerlTransHandler Apache::OK

as explained above. When we issue the request, we see no stat() calls. But this is possible only if
you serve only dynamically generated documents, i.e. no CGI scripts. Otherwise you will have to
write your own PerlTransHandler to handle requests as desired.

For example this PerlTransHandler will not lookup the file on the filesystem if the URI starts with
/foo, but will use the default PerlTransHandler otherwise:

 PerlTransHandler ’sub { return shift->uri() =~ m|^/foo| \
 ? Apache::OK : Apache::DECLINED;}’

Let’s see the same configuration using the <Perl > section and a dedicated package:

29 8 Mar 2001

4.7 Reducing the Number of stat() Calls Made by Apachemod_perl Tutorial: Performance Tuning

 <Perl>
 package My::Trans;
 use Apache::Constants qw(:common);
 sub handler{
 my $r = shift;
 return OK if $r->uri() =~ m|^/foo|;
 return DECLINED;
 }

 package Apache::ReadConfig;
 $PerlTransHandler = "My::Trans";
 </Perl>

As you see we have defined the My::Trans package and implemented the handler() function.
Then we have assigned this handler to the Perl Tran sHandler .

Of course you can move the code in the module into an external file, (e.g. My/Trans.pm) and config-
ure the Perl Tran sHandler with

 PerlTransHandler My::Trans

in the normal way (no <Perl > section required.

4.8 Cached stat() Calls by Perl
When you do a stat() (or its variations -M -- last modification time, -A -- last access time, -C --
last inode-change time, and others), the information is cached. If you need to make an additional
check for the same file, use the _ variable and save the overhead of this check. For example when
testing for existence and read permissions you might use:

 my $filename = "./test";
 # two stat() calls
 print "OK\n" if -e $filename and -r $filename;
 my $mod_time = (-M $filename) * 24 * 60 * 60;
 print "$filename was modified $mod_time seconds before startup\n";

or the more efficient:

 my $filename = "./test";
 # two stat() calls
 print "OK\n" if -e $filename and -r _;
 my $mod_time = (-M _) * 24 * 60 * 60;
 print "$filename was modified $mod_time seconds before startup\n";

Two stat() syscalls saved!

 8 Mar 200130

Stas Bekman4.8 Cached stat() Calls by Perl

4.9 Be carefull with symbolic links
As you know Apache::Registry caches the scripts based on their URI. If you have the same
script that can be reached by different URIs, which is possible if you have used symbolic links, you
will get the same script cached twice!

For example:

 % ln -s /home/httpd/perl/news/news.pl /home/httpd/perl/news.pl

Now the script can be reached through the both URIs /news/news.pl and /news.pl . It doesn’t
really matter until you advertise the two URIs, and users reach the same script from both of them.

To detect this, use the /perl-status (Apache::Status) handler to see all the compiled scripts
and their packages. In our example, when requesting: http://localhost/perl-status?rgysubs you would
see:

 Apache::ROOT::perl::news::news_2epl
 Apache::ROOT::perl::news_2epl

after the both URIs have been requested from the same child process that happened to serve your
request. To make the debugging easier see run the server in single mode.

4.10 Limit ing the Size of the Processes
Apache::Size Limit allows you to kill off Apache httpd processes if they grow too large.

Configuration:

In your startup.pl:

 use Apache::SizeLimit;
 $Apache::SizeLimit::MAX_PROCESS_SIZE = 10000;
 # in KB, so this is 10MB

In your httpd.conf:

 PerlFixupHandler Apache::SizeLimit

See perldoc Apache::Size Limit for more details.

By using this module, you should be able to avoid using the Apache configuration directive MaxRe-
questsPer Child , although for some folks, using both in combination does the job.

31 8 Mar 2001

4.9 Be carefull with symbolic linksmod_perl Tutorial: Performance Tuning

http://localhost/perl-status?rgysubs

4.11 Sharing Memory
A very important point is the sharing of memory. If your OS supports this (and most sane systems do),
you might save more memory by sharing it between child processes. This is only possible when you
preload code at server startup. However during a child process’ life, its memory pages becomes
unshared and there is no way we can control perl to make it allocate memory so (dynamic) variables
land on different memory pages than constants, that’s why the copy-on-write effect (will explain in a
moment) will hit almost at random. If you are pre-loading many modules you might be able to balance
the memory that stays shared against the time for an occasional fork by tuning the MaxRe-
questsPer Child to a point where you restart before too much becomes unshared. In this case the
MaxRequestsPer Child is very specific to your scenario. You should do some measurements and
you might see if this really makes a difference and what a reasonable number might be. Each time a
child reaches this upper limit and restarts it should release the unshared copies and the new child will
inherit pages that are shared until it scribbles on them.

It is very important to understand that your goal is not to have MaxRequestsPer Child to be
10000. Having a child serving 300 requests on precompiled code is already a huge speedup, so if it is
100 or 10000 it does not really matter if it saves you the RAM by sharing. Do not forget that if you
preload most of your code at the server startup, the fork to spawn a new child will be very very fast,
because it inherits most of the preloaded code and the perl interpreter from the parent process. But
than, during the work of the child, its memory pages (which aren’t really its yet, it uses the parent’s
pages) are getting dirty (originally inherited and shared variables are getting updated/modified) and
the copy-on-write happens, which reduces the number of shared memory pages - thus enlarging the
memory demands. Killing the child and respawning a new one, allows to get the pristine shared
memory from the parent process again.

The conclusion is that MaxRequestsPer Child should not be too big, otherwise you loose the
benefits of the memory sharing.

4.12 How Shared My Memory Is
You’ve probably noticed that the word shared is being repeated many times in many things related to
mod_perl. Indeed, shared memory might save you a lot of money, since with sharing in place you can
run many more servers than without it.

How much shared memory do you have? You can see it by either using the memory utils that comes
with your system or you can deploy GTop module:

 print "Shared memory of the current process: ",
 GTop->new->proc_mem($$)->share,"\n";

 print "Total shared memory: ",
 GTop->new->mem->share,"\n";

When you watch the output of the top utility, don’t confuse RSS (or RES) column with SHARE
column -- RES is a RESident memory, which is a size of pages currently swapped in.

 8 Mar 200132

Stas Bekman4.11 Sharing Memory

4.13 Keeping the Shared Memory Limit
Apache::GTopLimit module allows you to kill off Apache httpd processes if they grow too large
(just like Apache::Size Limit) or have too little of shared memory.

Configuration:

In your startup.pl:

 use Apache::GTopLimit;

 # Control the life based on memory size
 # in KB, so this is 10MB
 $Apache::GTopLimit::MAX_PROCESS_SIZE = 10000;

 # Control the life based on Shared memory size
 # in KB, so this is 4MB
 $Apache::GTopLimit::MIN_PROCESS_SHARED_SIZE = 4000;

 # watch what happens
 $Apache::GTopLimit::DEBUG = 1;

In your httpd.conf:

 PerlFixupHandler Apache::GTopLimit

4.14 Preload Perl modules at server startup
Use the Perl Require and PerlMod ule directives to load commonly used modules such as
CGI.pm , DBI and etc., when the server is started. On most systems, server children will be able to
share the code space used by these modules. Just add the following directives into httpd.conf :

 PerlModule CGI;
 PerlModule DBI;

But even a better approach is to create a separate startup file (where you code in plain perl) and put
there things like:

 use DBI;
 use Carp;

Then you require() this startup file with help of Perl Require directive from httpd.conf ,
by placing it before the rest of the mod_perl configuration directives:

 PerlRequire /path/to/start-up.pl

CGI.pm is a special case. Ordinarily CGI.pm autoloads most of its functions on an as-needed basis.
This speeds up the loading time by deferring the compilation phase. However, if you are using
mod_perl, FastCGI or another system that uses a persistent Perl interpreter, you will want to precom-
pile the methods at initialization time. To accomplish this, call the package function compile() like

33 8 Mar 2001

4.13 Keeping the Shared Memory Limitmod_perl Tutorial: Performance Tuning

this:

 use CGI ();
 CGI->compile(’:all’);

The arguments to compile() are a list of method names or sets, and are identical to those accepted
by the use() and import() operators. Note that in most cases you will want to replace ’:all’
with tag names you really use in your code, since generally only a subset of subs is actually being
used.

4.15 Some numbers: Initial izing DBI.pm
The first example is the DBI module. As you know DBI works with many database drivers falling
into the DBD:: category, e.g. DBD::mysql . It’s not enough to preload DBI , you should initialize
DBI with driver(s) that you are going to use (usually a single driver is used), if you want to mini-
mize memory use after forking the child processes. Note that you want to do this under mod_perl and
other environments where the shared memory is very important. Otherwise you shouldn’t initialize
drivers.

You probably know already that under mod_perl you should use the Apache::DBI module to get
the connection persistence, unless you open a separate connection for each user--in this case you
should not use this module. Apache::DBI automatically loads DBI and overrides some of its
methods, so you should continue coding like there is only a DBI module.

Just as with modules preloading our goal is to find the startup environment that will lead to the small-
est "difference" between the shared and normal memory reported, therefore a smaller total memory
usage.

And again in order to have an easy measurement we will use only one child process, therefore we will
use this setting in httpd.conf:

 MinSpareServers 1
 MaxSpareServers 1
 StartServers 1
 MaxClients 1
 MaxRequestsPerChild 100

We are going to run memory benchmarks on five different versions of the startup.pl file. We always
preload these modules:

 use Gtop();
 use Apache::DBI(); # preloads DBI as well

option 1

Leave the file unmodified.

option 2

 8 Mar 200134

Stas Bekman4.15 Some numbers: Initializing DBI.pm

Install MySQL driver (we will use MySQL RDBMS for our test):

 DBI->install_driver("mysql");

It’s safe to use this method, since just like with use() , if it can’t be installed it’ll die().

option 3

Preload MySQL driver module:

 use DBD::mysql;

option 4

Tell Apache::DBI to connect to the database when the child process starts (Chil -
dInitHandler), no driver is preload before the child gets spawned!

 Apache::DBI->connect_on_init(’DBI:mysql:test::localhost’,
 "",
 "",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes
 # immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

Here is the Apache::Registry test script that we have used:

35 8 Mar 2001

4.15 Some numbers: Initializing DBI.pmmod_perl Tutorial: Performance Tuning

 preload_dbi.pl

 use strict;
 use GTop ();
 use DBI ();

 my $dbh = DBI->connect("DBI:mysql:test::localhost",
 "",
 "",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes
 # immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

 my $r = shift;
 $r->send_http_header(’text/plain’);

 my $do_sql = "show tables";
 my $sth = $dbh->prepare($do_sql);
 $sth->execute();
 my @data = ();
 while (my @row = $sth->fetchrow_array){
 push @data, @row;
 }
 print "Data: @data\n";
 $dbh->disconnect(); # NOP under Apache::DBI

 my $proc_mem = GTop->new->proc_mem($$);
 my $size = $proc_mem->size;
 my $share = $proc_mem->share;
 my $diff = $size - $share;
 printf "%8s %8s %8s\n", qw(Size Shared Diff);
 printf "%8d %8d %8d (bytes)\n",$size,$share,$diff;

The script opens a connection to the database ’test’ and issues a query to learn what tables the
databases has. When the data is collected and printed the connection would be closed in the regular
case, but Apache::DBI overrides it with empty method. When the data is processed a familiar to
you already code to print the memory usage follows.

The server was restarted before each new test.

So here are the results of the five tests that were conducted, sorted by the Diff column:

1. After the first request:

 Version Size Shared Diff Test type
 --
 1 3465216 2621440 843776 install_driver
 2 3461120 2609152 851968 install_driver & connect_on_init
 3 3465216 2605056 860160 preload driver
 4 3461120 2494464 966656 nothing added
 5 3461120 2482176 978944 connect_on_init

 8 Mar 200136

Stas Bekman4.15 Some numbers: Initializing DBI.pm

2. After the second request (all the subsequent request showed the same results):

 Version Size Shared Diff Test type
 --
 1 3469312 2609152 860160 install_driver
 2 3481600 2605056 876544 install_driver & connect_on_init
 3 3469312 2588672 880640 preload driver
 4 3477504 2482176 995328 nothing added
 5 3481600 2469888 1011712 connect_on_init

Now what do we conclude from looking at these numbers. First we see that only after a second reload
we get the final memory footprint for a specific request in question (if you pass different arguments
the memory usage might and will be different).

But both tables show the same pattern of memory usage. We can clearly see that the real winner is the
startup.pl file’s version where the MySQL driver was installed (1). Since we want to have a connec-
tion ready for the first request made to the freshly spawned child process, we generally use the second
version (2) which uses somewhat more memory, but has almost the same number of shared memory
pages. The third version only preloads the driver which results in smaller shared memory. The last two
versions having nothing initialized (4) and having only the connect_on_init() method used (5).
The former is a little bit better than the latter, but both significantly worse than the first two versions.

To remind you why do we look for the smallest value in the column diff, recall the real memory usage
formula:

 Total_RAM - Shared_RAM_per_Child
 MaxClients = ---------------------------------------
 Max_Process_Size - Shared_RAM_per_Child

Notice that the smaller the diff is, the bigger the number of processes you can have using the same
amount of RAM. Therefore every 100K difference counts, when you multiply it by the number of
processes. If we take the number from the version version (1) vs. (4) and assume that we have 256M
of memory dedicated to mod_perl processes we will get the following numbers using the formula
derived from the above formula:

 RAM - largest_shared_size
 N_of Procs = -------------------------
 Diff

 268435456 - 2609152
 (ver 1) N = ------------------- = 309
 860160

 268435456 - 2469888
 (ver 5) N = ------------------- = 262
 1011712

So you can tell the difference (17% more child processes in the first version).

37 8 Mar 2001

4.15 Some numbers: Initializing DBI.pmmod_perl Tutorial: Performance Tuning

4.16 Preload Registry Scripts
Apache::Registry Loader compiles Apache::Registry scripts at server startup. It can be a
good idea to preload the scripts you are going to use as well. So the code will be shared among the
children.

Here is an example of the use of this technique. This code is included in a Perl Require ’d file, and
walks the directory tree under which all registry scripts are installed. For each .pl file encountered, it
calls the Apache::Registry Loader ::handler() method to preload the script in the parent
server (before pre-forking the child processes):

 use File::Find ’finddepth’;
 use Apache::RegistryLoader ();
 {
 my $perl_dir = "perl/";
 my $rl = Apache::RegistryLoader->new;
 finddepth(sub {
 return unless /\.pl$/;
 my $url = "/$File::Find::dir/$_";
 print "pre-loading $url\n";

 my $status = $rl->handler($url);
 unless($status == 200) {
 warn "pre-load of ‘$url’ failed, status=$status\n";
 }
 }, $perl_dir);
 }

Note that we didn’t use the second argument to handler() here, as module’s manpage suggests. To
make the loader smarter about the uri->filename translation, you might need to provide a trans()
function to translate the uri to filename. URI to filename translation normally doesn’t happen until
HTTP request time, so the module is forced to roll its own translation. If filename is omitted and a
trans() routine was not defined, the loader will try using the URI relative to ServerRoot.

4.17 Limit ing the Resources Used by httpd Children
Apache::Resource uses the BSD::Resource module, which in turn uses the C function
setr limit () to set limits on system resources such as memory and cpu usage.

To configure:

 PerlModule Apache::Resource
 # set child memory limit in megabytes
 # (default is 64 Meg)
 PerlSetEnv PERL_RLIMIT_DATA 32:48

 # set child CPU limit in seconds
 # (default is 360 seconds)
 PerlSetEnv PERL_RLIMIT_CPU 120

 PerlChildInitHandler Apache::Resource

 8 Mar 200138

Stas Bekman4.16 Preload Registry Scripts

If you configure Apache::Status , it will let you review the resources set in this way.

The following limit values are in megabytes: DATA, RSS, STACK, FSIZE , CORE, MEMLOCK; all
others are treated as their natural unit. Prepend PERL_RLIMIT_ for each one you want to use. Refer
to the setr limit man page on your OS for other possible resources.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process
may receive a signal (for example, if the CPU time or file size is exceeded), but it will be allowed to
continue execution until it reaches the hard limit (or modifies its resource limit). The rlimit structure is
used to specify the hard and soft limits on a resource. (See the manpage for setrlimit for your OS
specific information.)

If the value of the variable is of the form S:H , S is treated as the soft limit, and H is the hard limit. If it
is just a single number, it is used for both soft and hard limits.

4.18 Upload/Download of Big Files
You don’t want to tie up your precious mod_perl backend server children doing something as long and
dumb as transfering a file. The user won’t really see any important performance benefits from
mod_perl anyway, since the upload may take up to several minutes, and the overhead saved by
mod_perl is typically under one second.

If some particular script’s main functionality is the uploading or downloading of big files, you proba-
bly want it to be executed on a plain apache server under mod_cgi.

This of course assumes that the script requires none of the functionality of the mod_perl server, such
as custom authentication handlers.

4.19 Global vs Fully Qualified Vari ables
It’s always a good idea to stay away from global variables when possible. Some variables must be
global so Perl can see them, such as a module’s @ISA or $VERSION variables (or fully qualified
@MyModule::ISA). In common practice, a combination of strict and vars pragmas keeps
modules clean and reduces a bit of noise. However, vars pragma also creates aliases as the
Exporter does, which eat up more memory. When possible, try to use fully qualified names instead
of use vars. Example:

 package MyPackage;
 use strict;
 @MyPackage::ISA = qw(...);
 $MyPackage::VERSION = "1.00";

vs.

 package MyPackage;
 use strict;
 use vars qw(@ISA $VERSION);
 @ISA = qw(...);
 $VERSION = "1.00";

39 8 Mar 2001

4.18 Upload/Download of Big Filesmod_perl Tutorial: Performance Tuning

4.20 Forking or Executing subprocesses from mod_perl
Generally you should not fork from your mod_perl scripts, since when you do -- you are forking the
entire apache web server, lock, stock and barrel. Not only is your perl code being duplicated, but so is
mod_ssl, mod_rewrite, mod_log, mod_proxy, mod_spelling or whatever modules you have used in
your server, all the core routines and so on.

A much wiser approach would be to spawn a sub-process, hand it the information it needs to do the
task, and have it detach (close STD* + setsid()). This is wise only if the parent who spawns this
process, immediately continues, you do not wait for the sub-process to complete. This approach is
suitable for a situation when you want to trigger a long time taking process through the web interface,
like processing some data, sending email to thousands of subscribed users and etc. Otherwise, you
should convert the code into a module, and use its functions or methods to call from CGI script.

Just making a system() call defeats the whole idea behind mod_perl, perl interpreter and modules
should be loaded again for this external program to run.

Basically, you would do:

 $params=FreezeThaw::freeze(
 [all data to pass to the other process]
);
 system("program.pl $params");

and in program.pl :

 use POSIX qw(setsid);
 @params=FreezeThaw::thaw(shift @ARGV);
 # check that @params is ok
 close STDIN;
 close STDOUT;
 close STDERR;
 # you might need to reopen the STDERR
 # open STDERR, ">/dev/null";
 setsid(); # to detach

At this point, program.pl is running in the ‘‘background’’ while the system() returns and
permits apache to get on with life.

This has obvious problems. Not the least of which is that @params must not be bigger then whatever
your architecture’s limit is (could depend on your shell).

Also, the communication is only one way.

However, you might want be trying to do the ‘‘wrong thing’’. If what you want is to send information
to the browser and then do some post-processing, look into Perl CleanupHan dler .

If you are interested in more deep level details, this is what actually happens when you fork and make
a system call, like

 8 Mar 200140

Stas Bekman4.20 Forking or Executing subprocesses from mod_perl

 system("echo Hi"),CORE::exit(0) unless fork();

which is might be more familiar in this form:

 if (fork){
 #do nothing
 } else {
 system("echo Hi");
 CORE::exit(0);
 }

What happens is that fork() gives you 2 execution paths and the child gets virtual memory sharing a
copy of the program text (read only) and sharing a copy of the data space copy-on-write (remember
why you pre-load modules in mod_perl?). In the above code a parent will immediately continue with
the code that comes up after the fork, while the forked process will execute system("echo Hi")
and then terminate itself.

Notice that I use CORE::exit and not exit which would be automatically overriden by
Apache::exit if used in conjunction with Apache::Registry and friends.

The only work is setting up the page tables for the virtual memory and the second process goes on its
separate way.

Next, Perl will find /bin/echo along the search path, and invoke it directly. Perl system() is
not system(3) [C-library]. Only when the command has shell meta-chars does Perl invoke a real
shell. That’s a *very* nice optimization.

Only if you do:

 system "sh -c ’echo foo’"

OS actually parses your command with a shell so you exec() a copy of /bin/sh , but since one is
almost certainly already running somewhere, the system will notice that (via the disk inode reference)
and replace your virtual memory page table with one pointed at the already-loaded program code plus
your own data space. Then the shell parses the passed command.

Since it is echo , it will execute it as a built-in in the latter example or a /bin/echo in the former
and be done, but this is only an example. You aren’t calling system("echo Hi") in your
mod_perl scripts, right? Since most other real things (heavy programs executed as a subprocess)
would involve repeating the process to load the specified command or script (it might involve some
actual demand paging from the program file if you execute new code).

The only place you see real overhead from this scheme is when the parent process is huge (unfortu-
nately like mod_perl...) and the page table becomes large as a side effect. The whole point of
mod_perl is to avoid having to fork() / exec() something on every hit, though. Perl can do just
about anything by itself. However, you probably won’t get in trouble until you hit about 30 forks/sec
on a so-so pentium.

Now let’s get to the gory details of forking.

41 8 Mar 2001

4.20 Forking or Executing subprocesses from mod_perlmod_perl Tutorial: Performance Tuning

4.20.1 Freeing the Parent Process

In the child code you must also close all the pipes to the connection socket that were opened by the
parent process (i.e. STDIN and STDOUT) and inherited by the child, so the parent will be able to
complete the request and free itself for serving other requests. If you need the STDIN and/or STDOUT
streams you should re-open them. You may need to close or re-open the STDERR filehandle. It’s
opened to append to the error_log file as inherited from its parent, so chances are that you will want to
leave it untouched.

Under mod_perl, the spawned process also inherits the file descriptor that’s tied to the socket through
which all the communications between the server and the client happen. Therefore we need to free this
stream in the forked process. If we don’t do that, the server cannot be restarted while the spawned
process is still running. If an attempt is made to restart the server you will get the following error:

 [Mon Dec 11 19:04:13 2000] [crit]
 (98)Address already in use: make_sock:
 could not bind to address 127.0.0.1 port 8000

Apache::SubPro cess comes to help and provides a method cleanup_for_exec() which
takes care of closing this file descriptor.

So the simplest way is to freeing the parent process is to close all three STD* streams if we don’t need
them and untie the Apache socket. In addition you may want to change process’ current directory to /
so the forked process won’t keep the mounted partition busy, if this is to be unmounted at a later time.
To summarize all this issues, here is an example of the fork that takes care of freeing the parent
process.

 use Apache::SubProcess;
 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 $r->cleanup_for_exec(); # untie the socket
 chdir ’/’ or die "Can’t chdir to /: $!";
 close STDIN;
 close STDOUT;
 close STDERR;

 # some code comes here

 CORE::exit(0);
 }
 # possibly more code here usually run by the parent

Of course between the freeing the parent code and child process termination the real code is to be
placed.

 8 Mar 200142

Stas Bekman4.20.1 Freeing the Parent Process

4.20.2 Detaching the Forked Process

Now what happens if the forked process is running and we decided that we need to restart the
web-server? This forked process will be aborted, since when parent process will die during the restart
it’ll kill its child processes as well. In order to avoid this we need to detach the process from its parent
session, by opening a new session with help of setsid() system call, provided by the POSIX
module:

 use POSIX ’setsid’;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 setsid or die "Can’t start a new session: $!";
 ...
 }

Now the spawned child process has a life of its own, and it doesn’t depend on the parent anymore.

4.20.3 Avoiding Zombie Processes

Normally, every process has its parent. Many processes are children of the init process, whose PID
equals to 1. When you fork a process you must wait() or waitpid() for it to finish. If you don’t
wait for it becomes a zombie.

Zombie, is a process that doesn’t have a father. When the child quits, it reports the termination to his
parent. If no one wait()s to collect the exit status of the child, it gets ‘‘confused’’ and becomes a
ghost process, that can be seen, but not killed. It will be killed only when you stop the httpd process
that spawned it! (generally top()/ps() utilities display these processes with <defunc > tag, and
you will see an increment of the zombies counter reported when doing top().) These zombie
processes can take up system resources and are generally undesirable.

So the proper fork is:

 print "Content-type: text/plain\n\n";

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
 } else {
 # do something
 CORE::exit(0);
 }

But in most cases the only reason you would want to fork is when you need to spawn a process that
would take a lot of time to complete. So if the server child that spawns this process has to wait for it to
finish, you gained nothing. You cannot neither wait for its completion, nor continue because you will
get yet another zombie process.

43 8 Mar 2001

4.20.2 Detaching the Forked Processmod_perl Tutorial: Performance Tuning

The simplest solution is to ignore your dead children (this doesn’t work everywhere, however).

 $SIG{CHLD} = IGNORE;

When you set CHLD signal handler to IGNORE, all the processes will be collected by the init
process and prevent from them to become zombies.

Note, that you cannot localize this setting with local() . If you do, it wouldn’t take the desired
effect.

The other thing that you must do -- is to close all the pipes to the connection socket that were opened
by the parent process (a STDIN and a STDOUT) and inherited by the child, so the parent will be able
to complete the request and free itself for serving other requests. You may need to close and reopen a
STDERR filehandler (It’s opened to append to the error_log file as inhereted by parent, so chances are
that you want it to leave untouched).

So now the code would look like:

 print "Content-type: text/plain\n\n";

 $SIG{CHLD} = IGNORE;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
 } else {
 close STDIN;
 close STDOUT;
 close STDERR;
 # do something long lasting
 CORE::exit(0);
 }

Another more portable, but slightly more expensive solution is to use a double fork approach.

 print "Content-type: text/plain\n\n";

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 } else {
 defined (my $grandkid = fork) or die "Kid cannot fork: $!\n";
 if ($grandkid) {
 CORE::exit(0);

 } else {
 # code here
 close STDIN;
 close STDOUT;
 close STDERR;
 # do something long lasting
 CORE::exit(0);
 }
 }

 8 Mar 200144

Stas Bekman4.20.3 Avoiding Zombie Processes

Grandkid becomes a "child of init" (parent process ID is 1).

Note that the last two solutions do allow you to know the exit status of the process, but in our case we
don’t want to.

One more solution is to use a different SIGCHLD handler:

 use POSIX ’WNOHANG’;
 $SIG{CHLD} = sub { while(waitpid(-1,WNOHANG)>0) {} };

Which is usefull when you fork() more than once process. The handler could call wait() as well,
but for a variety of reasons involving tge handling of stopped processes and the rare event in which
two children exit at nearly the same moment, the best technique is to call waitpid() in a tight loop
with a first argument of -1 and a second argument of WNOHANG. Together these arguments tell
waitpid() to reap the next child that’s available, and prevent the call from blocking if there
happens to be no child ready from reaping. The handler will loop untill waitpid() returns a nega-
tive number or zero, indicating that no more reapable children remain.

You will probably want to open your own log file in the spawned process and log some info so you
know what have happened there. At least while debugging your code.

4.20.4 A Complete Fork Example

Now let’s put all the bits of code together and show a well written fork code that solves all the prob-
lems discussed so far. We will use an <Apache::Registry> script for this purpose:

45 8 Mar 2001

4.20.4 A Complete Fork Examplemod_perl Tutorial: Performance Tuning

 proper_fork1.pl

 use strict;
 use POSIX ’setsid’;
 use Apache::SubProcess;

 my $r = shift;
 $r->send_http_header("text/plain");

 $SIG{CHLD} = ’IGNORE’;
 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 print "Parent $$ has finished, kid’s PID: $kid\n";
 } else {
 $r->cleanup_for_exec(); # untie the socket
 chdir ’/’ or die "Can’t chdir to /: $!";
 open STDIN, ’/dev/null’ or die "Can’t read /dev/null: $!";
 open STDOUT, ’>/dev/null’
 or die "Can’t write to /dev/null: $!";
 open STDERR, ’>/tmp/log’ or die "Can’t write to /tmp/log: $!";
 setsid or die "Can’t start a new session: $!";

 my $oldfh = select STDERR;
 local $| = 1;
 select $oldfh;
 warn "started\n";
 # do something time-consuming
 sleep 1, warn "$_\n" for 1..20;
 warn "completed\n";

 CORE::exit(0); # terminate the process
 }

The script starts with the usual declaration of the strict mode, loading the POSIX and
Apache::SubPro cess modules and importing of the setsid() symbol from the POSIX
package.

The HTTP header is sent next, with the Content-type of text/plain. The gets ready to ignore the child,
to avoid zombies and the fork is called.

The program gets its personality split after fork and the if conditional evaluates to a true value for the
parent process, and to a false value for the child process, therefore the first block is executed by the
parent and the second by the child.

The parent process announces his PID and the PID of the spawned process and finishes its block. If
there will be any code outside it will be executed by the parent as well.

The child process starts its code by disconnecting from the socket, changing its current directory to / ,
opening the STDIN and STDOUT streams to /dev/null, which in effect closes them both before
opening. In fact in this example we don’t need neither of these, so we could just close() both. The
child process completes its disengagement from the parent process by opening the STDERR stream to
/tmp/log, so it could write there, and creating a new session with help of setsid(). Now the child
process has nothing to do with the parent process and can do the actual processing that it has to do. In
our example it performs a simple series of warnings, which are logged into /tmp/log:

 8 Mar 200146

Stas Bekman4.20.4 A Complete Fork Example

 my $oldfh = select STDERR;
 local $| = 1;
 select $oldfh;
 warn "started\n";
 # do something time-consuming
 sleep 1, warn "$_\n" for 1..20;
 warn "completed\n";

The localized setting of $|=1 unbuffers the STDERR stream, so we can immediately see the debug
output generated by the program. In fact this setting is not required when the output is generated by
warn().

Finally the child process terminates by calling:

 CORE::exit(0);

which make sure that it won’t get out of the block and run some code that it’s not supposed to run.

This code example will allow you to verify that indeed the spawned child process has its own life, and
its parent is free as well. Simply issue a request that will run this script, watch that the warnings are
started to be written into the /tmp/log file and issue a complete server stop and start. If everything is
correct, the server will successfully restart and the long term process will still be running. You will
know that it’s still running, if the warnings will still be printed into the /tmp/log file. You may need to
raise the number of warnings to do above 20, to make sure that you don’t miss the end of the run.

If there are only 5 warnings to be printed, you should see the following output in this file:

 started
 1
 2
 3
 4
 5
 completed

4.21 Using $|=1 under mod_perl and better print() tech-
niques.
As you know local $|=1; disables the buffering of the currently selected file handle (default is
STDOUT). If you enable it, ap_rflush() is called after each print() , unbuffering Apache’s IO.

If you are using a _bad_ style in generating output, which consist of multiple print() calls, or you
just have too many of them, you will experience a degradation in performance. The severity depends
on the number of the calls you make.

Many old CGIs were written in the style of:

47 8 Mar 2001

4.21 Using $|=1 under mod_perl and better print() techniques.mod_perl Tutorial: Performance Tuning

 print "<BODY BGCOLOR=\"black\" TEXT=\"white\">";
 print "<H1>";
 print "Hello";
 print "</H1>";
 print " foo ";
 print "</BODY>";

which reveals the following drawbacks: multiple print() calls - performance degradation with
$|=1 , backslashism which makes the code less readable and more diffi cult to format the HTML to be
easily readable as CGI’s output. The code below solves them all:

 print qq{
 <BODY BGCOLOR="black" TEXT="white">
 <H1>
 Hello
 </H1>
 foo
 </BODY>
 };

I guess you see the difference. Be careful though, when printing a <HTML> tag. The correct way is:

 print qq{<HTML>
 <HEAD></HEAD>
 <BODY>
 }

If you try the following:

 print qq{
 <HTML>
 <HEAD></HEAD>
 <BODY>
 }

Some older browsers might not accept the output as HTML, but rather print it as a plain text, since
they expect the first characters after the headers and empty line to be <HTML> and not spaces and/or
additional newline and then <HTML>. Even if it works with your browser, it might not work for
others.

Now let’s go back to the $|=1 topic. I still disable buffering, for 2 reasons: I use few print() calls
by printing out multiline HTML and not a line per print() and I want my users to see the output
immediately. So if I am about to produce the results of the DB query, which might take some time to
complete, I want users to get some titles ahead. This improves the usability of my site. Recall yourself:
What do you like better: getting the output a bit slower, but steadily from the moment you’ve pressed
the Submit button or having to watch the ‘‘falling stars’’ for awhile and then to receive the whole
output at once, even a few millisecs faster (if the client (browser) did not time out till then).

An even better solution is to keep the buffering enabled, and use a Perl API rflush() call to flush
the buffers when wanted. This way you can aggregate in the buffer the top of the page you are going
to send to user, and flush it a moment before you are going to do some lenghty operation, like DB
query. So you kill the two birds in one shoot: You show some of the data to the user immediately, so
user will feel that something is actually happening, and you almost have no performance hit caused by

 8 Mar 200148

Stas Bekman4.21 Using $|=1 under mod_perl and better print() techniques.

disabled buffering.

 use CGI ();
 my $r = shift;
 my $q = new CGI;
 print $q->header(’text/html’);
 print $q->start_html;
 print $q->p("Searching...Please wait");
 $r->rflush;
 # imitate a lenghty operation
 for (1..5) {
 sleep 1;
 }
 print $q->p("Done!");

Conclusion: Do not blindly follow suggestions, but think what is best for you in every given case.

4.22 Sending plain HTML as a compressed output
Have you ever served a huge HTML file (e.g. a file bloated with JavaScript code) and wandered how
could you send it compressed, thus drammatically cutting down the download times. After all java
applets can be compressed into a jar and benefit from a faster download times. Why cannot we do the
same with a plain ASCII (HTML,JS and etc), it is a known fact that ASCII text can be compressed by
a factor of 10.

Apache::GzipChain comes to help you with this task. If a client (browser) understands gzip
encoding this module compresses the output and sends it downstream. A client decompresses the data
upon receive and renders the HTML as if it was a plain HTML fetch.

For example to compress all html files on the fly, do:

 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::PassFile
 </Files>

Remember that it will work only if the browser claims to accept compressed input, thru
Accept-Encod ing header. Apache::GzipChain keeps a list of user-agents, thus it also looks
at User-Agent header, for known to accept compressed output browsers.

For example if you want to return compressed files which should pass in addition through Embperl
module, you would write:

 <Location /test>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::EmbperlChain Apache::PassFile
 </Location>

Hint: Watch an access_log file to see how many bytes were actually send, compare with a regular
configuration send.

49 8 Mar 2001

4.22 Sending plain HTML as a compressed outputmod_perl Tutorial: Performance Tuning

(See perldoc Apache::GzipChain).

Notice that the rightmost PerlHandler must be a content producer. Use Apache::Pass File or
another similar module.

;o)

 8 Mar 200150

Stas Bekman4.22 Sending plain HTML as a compressed output

5 Getting Help and Further Learning

51 8 Mar 2001

5 Getting Help and Further Learningmod_perl Tutorial: Getting Help and Further Learning

5.1 What we will learn in this chapter
Getting help

Get help with mod_perl

Get help with Perl

Get help with Perl/CGI

Get help with Apache

Get help with DBI

Get help with Squid

5.2 Getting help
If after reading this guide and other documents listed in this section, you feel that your question is not
yet answered, please ask the apache/mod_perl mailing list to help you. But first try to browse the
mailing list archive. Most of the time you will find the answer for your question by searching the
mailing archive, since there is a big chance someone else has already encountered the same problem
and found a solution for it. If you ignore this advice, do not be surprised if your question will be left
unanswered - it bores people to answer the same question more than once. It does not mean that you
should avoid asking questions. Just do not abuse the available help and RTFM before you call for
HELP . (You have certainly heard the infamous fable of the shepherd boy and the wolves)

5.3 Get help with mod_perl
mod_perl home

http://perl.apache.org

News and Resources

Take23: News and Resources for the mod_perl world http://take23.org

mod_perl Books

’Apache Modules’ Book

http://www.modperl.com is the home site of The Apache Modules Book, a book about creat-
ing Web server modules using the Apache API, written by Lincoln Stein and Doug
MacEachern.

Now you can purchase the book at your local bookstore or from the online dealer. O’Reilly
lists this book as:

 8 Mar 200152

Stas Bekman5.1 What we will learn in this chapter

http://www.modperl.com/
http://take23.org/
http://perl.apache.org/

 Writing Apache Modules with Perl and C
 By Lincoln Stein & Doug MacEachern
 1st Edition March 1999
 1-56592-567-X, Order Number: 567X
 746 pages, $34.95

’Managing and Programming mod_perl’ Book

http://www.modperlbook.com is the home site of the new mod_perl book, that Eric Cholet
and Stas Bekman are co-authoring. We expect the book to be published in 2001.

Ideas, suggestions and comments are welcome. Please send them to info@modperlbook.com
.

mod_perl Quick Reference Card

mod_perl Pocket Reference by Andrew Ford was published by O’Reilly and Associates
http://www.oreilly.com/catalog/modperlpr/

You should probably get also the Apache Pocket Reference by the same author and the same
publisher: http://www.oreilly.com/catalog/apachepr/

See also Andrew’s collection of reference card for Apache and other programs:
http://www.refcards.com.

mod_perl Guide

by Stas Bekman at http://perl.apache.org/guide

mod_perl FAQ

by Frank Cringle at http://perl.apache.org/faq/ .

mod_perl performance tuning guide

by Vivek Khera at http://perl.apache.org/tuning/ .

mod_perl plugin reference guide

by Doug MacEachern at http://perl.apache.org/src/mod_perl.html .

Quick guide for moving from CGI to mod_perl

at http://perl.apache.org/dist/cgi_to_mod_perl.html .

mod_perl_traps, common traps and solutions for mod_perl users

at http://perl.apache.org/dist/mod_perl_traps.html .

mod_perl Resources Page

http://www.perlreference.com/mod_perl/

53 8 Mar 2001

5.3 Get help with mod_perlmod_perl Tutorial: Getting Help and Further Learning

http://www.perlreference.com/mod_perl/
http://perl.apache.org/dist/mod_perl_traps.html
http://perl.apache.org/dist/cgi_to_mod_perl.html
http://perl.apache.org/src/mod_perl.html
http://perl.apache.org/tuning/
http://perl.apache.org/faq/
http://perl.apache.org/guide
http://www.refcards.com./
http://www.oreilly.com/catalog/apachepr/
http://www.oreilly.com/catalog/modperlpr/
http://www.modperlbook.com/

mod_perl mailing list

The Apache/Perl mailing list (modperl@apache.org) is available for mod_perl users and devel-
opers to share ideas, solve problems and discuss things related to mod_perl and the
Apache::* modules. To subscribe to this list, send mail to modperl-subscribe@apache.org with
empty Subject and with Body :

 subscribe modperl

A searchable mod_perl mailing list archive available at http://forum.swarth-
more.edu/epigone/modperl . We owe it to Ken Williams.

More archives available:

http://www.geocrawler.com/lists/3/web/182/0/

http://www.bitmechanic.com/mail-archives/modperl/

http://www.mail-archive.com/modperl%40apache.org/

http://www.davin.ottawa.on.ca/archive/modperl/

http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl

http://www.egroups.com/group/modperl/

5.4 Get help with Perl
The Perl FAQ

http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html

The Perl home

http://www.perl.com/

The Perl Journal

http://www.tpj.com/

Perl Module Mechanics

http://world.std.com/~swmcd/steven/perl/module_mechanics.html - This page describes the
mechanics of creating, compiling, releasing and maintaining Perl modules.

5.5 Get help with Perl/CGI
Perl/CGI FAQ

 8 Mar 200154

Stas Bekman5.4 Get help with Perl

http://world.std.com/~swmcd/steven/perl/module_mechanics.html
http://www.tpj.com/
http://www.perl.com/
http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html
http://www.egroups.com/group/modperl/
http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl
http://www.davin.ottawa.on.ca/archive/modperl/
http://www.mail-archive.com/modperl%40apache.org/
http://www.bitmechanic.com/mail-archives/modperl/
http://www.geocrawler.com/lists/3/web/182/0/
http://forum.swarthmore.edu/epigone/modperl
http://forum.swarthmore.edu/epigone/modperl

at http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

Answers to some bothering Perl and Perl/CGI questions

http://stason.org/TULARC/webmaster/myfaq.html

Idiot’s Guide to CGI programming

http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html

WWW Security FAQ

http://www.w3.org/Security/Faq/www-security-faq.html

CGI/Perl Taint Mode FAQ

http://www.gunther.web66.com/FAQS/taintmode.html (by Gunther Birznieks)

5.6 Get help with Apache
Apache Project’s Home

http://www.apache.org

Apache Quick Reference Card

http://www.refcards.com (Apache and other refcards are available from this link)

The Apache FAQ

http://www.apache.org/docs/misc/FAQ.html

Apache Server Documentation

http://www.apache.org/docs/

Apache Handlers

http://www.apache.org/docs/handler.html

mod_rewrite Guide

http://www.engelschall.com/pw/apache/rewriteguide/

5.7 Get help with DBI
Perl DBI examples

http://www.saturn5.com/~jwb/dbi-examples.html (by Jeffrey William Baker).

55 8 Mar 2001

5.6 Get help with Apachemod_perl Tutorial: Getting Help and Further Learning

http://www.saturn5.com/~jwb/dbi-examples.html
http://www.engelschall.com/pw/apache/rewriteguide/
http://www.apache.org/docs/handler.html
http://www.apache.org/docs/
http://www.apache.org/docs/misc/FAQ.html
http://www.refcards.com/
http://www.apache.org/
http://www.gunther.web66.com/FAQS/taintmode.html
http://www.w3.org/Security/Faq/www-security-faq.html
http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html
http://stason.org/TULARC/webmaster/myfaq.html
http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

DBI Homepage

http://www.symbolstone.org/technology/perl/DBI/

DBI mailing list infor mation

http://www.fugue.com/dbi/

DBI mailing list archives

http://outside.organic.com/mail-archives/dbi-users/
http://www.xray.mpe.mpg.de/mailing-lists/dbi/

Persistent connections with mod_perl

http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS

5.8 Get help with Squid - Inter net Object Cache
Home page - http://squid.nlanr.net/

FAQ - http://squid.nlanr.net/Squid/FAQ/FAQ.html

Users Guide - http://squid.nlanr.net/Squid/Users-Guide/

Mailing lists - http://squid.nlanr.net/Squid/mailing-lists.html

;o)

 8 Mar 200156

Stas Bekman5.8 Get help with Squid - Internet Object Cache

http://squid.nlanr.net/Squid/mailing-lists.html
http://squid.nlanr.net/Squid/Users-Guide/
http://squid.nlanr.net/Squid/FAQ/FAQ.html
http://squid.nlanr.net/
http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS
http://www.xray.mpe.mpg.de/mailing-lists/dbi/
http://outside.organic.com/mail-archives/dbi-users/
http://www.fugue.com/dbi/
http://www.symbolstone.org/technology/perl/DBI/

Table of Contents:
..... 1Tutorial: Improving scripts and handlers performance under mod_perl
............... 3mod_perl Tutorial: Agenda
................... 31 Agenda
.................. 41.1 Agenda
............ 5mod_perl Tutorial: Getting Started Fast
................ 52 Getting Started Fast
.............. 62.1 mod_perl in Four Slides
............... 62.2 What is mod_perl?
................. 72.3 Installation
................. 82.4 Configuration
......... 82.5 The "mod_perl rules" Apache::Registry Scripts
.......... 92.6 The "mod_perl rules" Apache Perl Module
......... 92.7 Is That All I Need To Know About mod_perl?
............ 11mod_perl Tutorial: RDBMS and mod_perl
............... 113 RDBMS and mod_perl
....... 123.1 Apache::DBI - Initiate a persistent database connection
................ 123.1.1 Introduction
................ 133.1.2 Configuration
............ 133.1.3 Preopening DBI connections
............. 133.1.4 Debugging Apache::DBI
........ 143.1.5 Opening connections with different parameters
............ 143.1.6 Caching prepare() Statements
............ 15mod_perl Tutorial: Performance Tuning
................ 154 Performance Tuning
............ 164.1 What we will learn in this chapter
................ 164.2 The Big Picture
................ 174.3 Essential Tools
............. 174.3.1 Benchmarking Perl Code
............ 184.3.2 Benchmarking Response Times
............... 184.3.2.1 ApacheBench
................ 194.3.2.2 httperf
........... 194.3.3 Using LWP::Parallel::UserAgent
............... 234.4 Choosing MaxClients
................. 254.5 KeepAlive
................ 264.6 PerlSetupEnv Off
........ 274.7 Reducing the Number of stat() Calls Made by Apache
.............. 304.8 Cached stat() Calls by Perl
............. 314.9 Be carefull with symbolic links
............ 314.10 Limit ing the Size of the Processes
................ 324.11 Sharing Memory
............. 324.12 How Shared My Memory Is
............ 334.13 Keeping the Shared Memory Limit
........... 334.14 Preload Perl modules at server startup
........... 344.15 Some numbers: Initializing DBI.pm
.............. 384.16 Preload Registry Scripts
......... 384.17 Limit ing the Resources Used by httpd Children
............ 394.18 Upload/Download of Big Files
........... 394.19 Global vs Fully Qualified Variables

i 8 Mar 2001

........ 404.20 Forking or Executing subprocesses from mod_perl

............ 424.20.1 Freeing the Parent Process

............ 434.20.2 Detaching the Forked Process

............ 434.20.3 Avoiding Zombie Processes

............ 454.20.4 A Complete Fork Example

....... 474.21 Using $|=1 under mod_perl and better print() techniques.

......... 494.22 Sending plain HTML as a compressed output

......... 51mod_perl Tutorial: Getting Help and Further Learning

............. 515 Getting Help and Further Learning

............ 525.1 What we will learn in this chapter

................. 525.2 Getting help

.............. 525.3 Get help with mod_perl

................ 545.4 Get help with Perl

.............. 545.5 Get help with Perl/CGI

............... 555.6 Get help with Apache

................ 555.7 Get help with DBI

.......... 565.8 Get help with Squid - Internet Object Cache

 8 Mar 2001ii

	1€€Agenda
	1.1€€Agenda

	2€€Getting Started Fast
	2.1€€mod_perl in Four Slides
	2.2€€What is mod_perl?
	2.3€€Installation
	2.4€€Configuration
	2.5€€The "mod_perl rules" Apache::Registry Scripts
	2.6€€The "mod_perl rules" Apache Perl Module
	2.7€€Is That All I Need To Know About mod_perl?

	3€€RDBMS and mod_perl
	3.1€€Apache::DBI - Initiate a persistent database connection
	3.1.1€€Introduction
	3.1.2€€Configuration
	3.1.3€€Preopening DBI connections
	3.1.4€€Debugging Apache::DBI
	3.1.5€€Opening connections with different parameters
	3.1.6€€Caching prepare†‡ Statements

	4€€Performance Tuning
	4.1€€What we will learn in this chapter
	4.2€€The Big Picture
	4.3€€Essential Tools
	4.3.1€€Benchmarking Perl Code
	4.3.2€€Benchmarking Response Times
	4.3.2.1€€ApacheBench
	4.3.2.2€€httperf

	4.3.3€€Using LWP::Parallel::UserAgent

	4.4€€Choosing MaxClients
	4.5€€KeepAlive
	4.6€€PerlSetupEnv Off
	4.7€€Reducing the Number of stat†‡ Calls Made by Apache
	4.8€€Cached stat†‡ Calls by Perl
	4.9€€Be carefull with symbolic links
	4.10€€Limiting the Size of the Processes
	4.11€€Sharing Memory
	4.12€€How Shared My Memory Is
	4.13€€Keeping the Shared Memory Limit
	4.14€€Preload Perl modules at server startup
	4.15€€Some numbers: Initializing DBI.pm
	4.16€€Preload Registry Scripts
	4.17€€Limiting the Resources Used by httpd Children
	4.18€€Upload/Download of Big Files
	4.19€€Global vs Fully Qualified Variables
	4.20€€Forking or Executing subprocesses from mod_perl
	4.20.1€€Freeing the Parent Process
	4.20.2€€Detaching the Forked Process
	4.20.3€€Avoiding Zombie Processes
	4.20.4€€A Complete Fork Example

	4.21€€Using $|=1 under mod_perl and better print†‡ techniques.
	4.22€€Sending plain HTML as a compressed output

	5€€Getting Help and Further Learning
	5.1€€What we will learn in this chapter
	5.2€€Getting help
	5.3€€Get help with mod_perl
	5.4€€Get help with Perl
	5.5€€Get help with Perl/CGI
	5.6€€Get help with Apache
	5.7€€Get help with DBI
	5.8€€Get help with Squid - Internet Object Cache

