

The ApacheCon 2000
March 9, 2000

Orlando, Florida

Improv ing Script Performance Under
mod_perl

By Stas Bekman
Internet and Intranet programmer

http://stason.org/
<stas@stason.org>

1 4 Mar 2000

Tutorial: Improving Script Performance Under mod_perl

This document is originally written in POD, converted to HTML by pod2html utility and then to
PostScript by html2ps utility.

Copyright © 1998, 1999 Stas Bekman. All rights reserved.

(you will find a Table of Contents at the end)

 4 Mar 20002

Stas Bekman

1 Getting Started Fast

3 4 Mar 2000

1 Getting Started Fastmod_perl tutorial: Getting Started Fast

1.1 mod_perl in Four Slides
Each tutorial will concentrate on different aspects of running a mod_perl server and mod_perl program-
ming. In case you don’t know how to get started with it, or you think it’s a diffi cult task, these slides will
take away any worries you might have had when you came to this tutorial.

In just four slides you will be able to install and configure a mod_perl server. And, of course, to write new
code and reuse the existing code under mod_perl.

The four slides (sections) are:

Installation

Configuration

The ‘‘mod_perl rules’’ Apache::Registry Scripts

The ‘‘mod_perl rules’’ Apache Perl Module

1.2 What is mod_perl?
But before we go any further, there is a chance that you don’t know what mod_perl is. So let’s make a
little introduction to mod_perl.

Everybody knows that Perl scripts running under mod_cgi have numerous shortcomings. There are many
of them, but code recompilation and Perl interpreter loading overhead at each request is the hardest one to
overcome.

Among various attempts to improve on mod_cgi’s shortcomings, mod_perl has proved to be one of the
better ones and has been widely adopted by CGI developers. According to the
http://perl.apache.org/netcraft/ about 412000 hosts use mod_perl. Doug MacEachern fathered the core
code of this Apache module and licensed it under the ‘‘Artis tic License’’ as Perl itself.

mod_perl does away with mod_cgi’s forking by reusing the existing child processes. In this new model,
the child process doesn’t exit anymore when it has processed a request. The Perl interpreter is loaded only
once, when the process is started. Since the interpreter is persistent throughout the process’ lifetime, all
code is loaded and compiled only once, the first time it is seen. This makes all subsequent requests run
much faster because everything is already loaded and compiled. Response processing is now reduced to
running your code. This improves response times by a factor of 10 to 100, depending on the code being
executed.

Doug didn’t stop here, he went and extended mod_cgi’s functionality by adding a complete Perl API to
the Apache core. This makes it possible to write a complete Apache module in Perl, a feat that used to
require coding in C. From then on mod_perl enabled the programmer to handle all phases of request
processing in Perl.

 4 Mar 20004

Stas Bekman1.1 mod_perl in Four Slides

http://perl.apache.org/netcraft/

The new Perl API also allows complete server configuration in Perl. This has which made the lives of
many server administrators much easier, as they could now benefit from dynamically generating the
configuration, freed from hunting for bugs in huge configuration files full of similar directives for virtual
hosts and the like.

To provide backwards compatibility for plain CGI scripts that used to be run under mod_cgi, while still
benefit ing from a preloaded perl and modules, a few special handlers were written, each allowing a differ-
ent level of proximity to pure mod_perl functionality. Some take full advantage of mod_perl, while others
only a partial one.

mod_perl embeds a copy of the Perl interpreter into the Apache httpd executable, providing complete
access to Perl functionality within Apache. This enables a set of mod_perl-specific configuration direc-
tives, all of which start with the string Perl*. Most, but not all, of these directives are used to specify
handlers for various phases of the request.

It might occur to you that sticking a large executable (Perl) into another large executable (Apache) makes
a very, very large program. mod_perl certainly makes httpd significantly bigger and you will need more
RAM on your production server to be able to run many mod_perl processes, but in reality the situation is
different. Since mod_perl processes requests much faster, the number of the processes needed to handle
the same request rate is much lower relative to the mod_cgi approach. Generally you need slightly more
memory available, and the speed improvements you will see are well worth every megabyte of memory
you can add.

Now let’s get back to the All-In-Four-Slides...

1.3 Installation
Did you know that it takes about 10 minutes to build and install a mod_perl enabled Apache server on a
computer with a pretty average processor and a decent amount of system memory? It goes like this:

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
 % tar xzvf apache_x.x.x.tar.gz
 % tar xzvf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

That’s all!

Of course you must replace x.x.x with the actual version numbers of the mod_perl and Apache
releases that you use.

5 4 Mar 2000

1.3 Installationmod_perl tutorial: Getting Started Fast

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz

http://www.apache.org/dist/apache_x.x.x.tar.gz

The GNU tar utility knows how to uncompress a gzipped tar archive (use the z option).

All that’s left is to add a few configuration lines to a httpd.conf, an Apache configuration file, start the
server and enjoy mod_perl.

1.4 Configuration
Add the following to the configuration file httpd.conf:

 # for Apache::Registry mode
 Alias /perl/ /home/httpd/perl/

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes every URI starting with /perl to be handled by the Apache mod_perl module. It
will use the handler from the Perl module Apache::Registry .

1.5 The "mod_perl rules" Apache::Registry Scripts
You can write plain perl/CGI scripts just as under mod_cgi:

 mod_perl_rules1.pl

 print "Content-type: text/plain\r\n\r\n";
 print "mod_perl rules!\n";

Of course you can write them in the Apache Perl API:

 mod_perl_rules2.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);
 $r->print("mod_perl rules!\n");

Save both files under the /home/httpd/perl directory, make them executable and readable by server, and
issue these requests using your favorite browser:

 http://localhost/perl/mod_perl_rules1.pl
 http://localhost/perl/mod_perl_rules2.pl

In both cases you will see on the following response:

 4 Mar 20006

Stas Bekman1.4 Configuration

http://localhost/perl/mod_perl_rules2.pl

http://localhost/perl/mod_perl_rules1.pl

 mod_perl rules!

1.6 The "mod_perl rules" Apache Perl Module
To create an Apache Perl module, all you have to do is to wrap the code into a handler subroutine and
return the status to the server.

 ModPerl/Rules.pm

 use Apache::Constants;

 sub handler{
 my $r = shift;
 $r->send_http_header(’text/plain’);
 print "mod_perl rules!\n";
 return OK;
 }

Create a directory called ModPerl under one of the directories in @INC, and put Rules.pm into it. Then
add the following snippet to httpd.conf:

 PerlModule ModPerl::Rules
 <Location /mod_perl_rules>
 SetHandler perl-script
 PerlHandler ModPerl::Rules
 </Location>

Now you can issue a request to:

 http://localhost/perl/mod_perl_rules

and just as with our mod_perl_rules.pl scripts you will see:

 mod_perl rules!

as the response.

1.7 Is That All I Need To Know About mod_perl?
Definitely not!

These slides are intended to show you that you can install and start using a mod_perl server within 30
minutes of downloading the sources.

There is much more to mod_perl than this, you will need to plan your study around the projects you want
to implement. Fortunately, there are many resources and lots of help freely available to you.

At the end of each titorial you will find a chapter describing the available resources and pointers to them.

7 4 Mar 2000

1.6 The "mod_perl rules" Apache Perl Modulemod_perl tutorial: Getting Started Fast

http://localhost/perl/mod_perl_rules

;o)

 4 Mar 20008

Stas Bekman1.7 Is That All I Need To Know About mod_perl?

2 Performance. Benchmarks.

9 4 Mar 2000

2 Performance. Benchmarks.mod_perl tutorial: Performance. Benchmarks.

2.1 What we will learn in this chapter
Performance: An Overall picture

Analysis of SW and HW Requirements

Sharing Memory

How Shared My Memory Is

Preload Perl modules at server startup

Preload Registry Scripts

Global vs Fully Qualified Variables

Avoid Importing Functions

PerlSetupEnv Off

Adding a Proxy Server in http Accelerator Mode

KeepAlive

Upload/Download of Big Files

Forking or Executing subprocesses from mod_perl

Memory leakage

Checking script modification times

Cached stat() calls

Be carefull with symbolic links

Limit ing the size of the processes

Limit ing the resources used by httpd children

Limit ing the request rate speed (robots blocking)

Benchmarks. Impressing your Boss and Colleagues.

Tuning the Apache’s configuration variables for the best performance

Persistent DB Connections

 4 Mar 200010

Stas Bekman2.1 What we will learn in this chapter

Using $|=1 under mod_perl and better print() techniques.

Object Methods Calls Versus Function Calls

Sending plain HTML as a compressed output

2.2 Performance: An Overall picture
Before we dive into performance issues, there is something very important to understand. It applies to any
webserver, not only apache. All the efforts are made to make user’s web browsing experience a swift.
Among other web site usability factors, speed is one of the most crucial ones. What is a correct speed
measurement? Since user is the one that interacts with web site, speed measurement is a time passed from
the moment user follows a link or presses a submit button till the resulting page is being rendered by her
browser. So if we trace the data packet’s movement as it leaves user’s machine (request sent) till the reply
arrives, the packet travels through many entities on its way. It has to make its way through the network,
passing many interconnection nodes, before it enters the target machine it might go through proxy (accel-
erator) servers, then it’s being served by your server, and finally it has to make the whole way back. A
webserver is only one of the elements the packet sees on its way. You could work hard to fine tune your
webserver for the best performance, but a slow NIC (Network Interface Card) or slow network connection
from your server might defeat it all. That’s why it’s important to think big and to be aware of possible
bottlenecks between the server and the web. Of course there is nothing you can do if user has a slow
connection on its behalf.

Moreover, you might tune your scripts and webserver to process incoming requests ultra fast, so you will
need a little number of working servers, but you might find out that server processes are busy waiting for
slow clients to complete the download. You will see more examples in this chapter.

My point is that a web service is like car, if one of the details or mechanisms is broken the car will not
drive smoothly and it can even stop dead if pushed further without first fixing it.

2.3 Analysis of SW and HW Requirements
You need to analyze all of the problem’s dimensions. There are several things that need to be considered:

*How long does it take to process each request

*How many requests can you process simultaneously

*How many simultaneous requests are you planning to get

The first one is probably the easiest to optimize. Follow the performance optimization tips in the guide
and other docs, let a profeccional perl (mod_perl) programmer to work out your code and improve it.

The second one is a function of RAM. How much RAM is in the box, how many boxes do you have, and
how much RAM does each mod_perl process take? Multiply the first two and divide by the third. Ask
yourself whether it is better to switch to another, possibly just as inefficient language will actually cost
more than throwing another Ultra 2 into the rack. Also ask yourself whether switching to another language

11 4 Mar 2000

2.2 Performance: An Overall picturemod_perl tutorial: Performance. Benchmarks.

will even help. In some applications, a huge chunk of memory is needed e.g. to link in Oracle runtime
libraries. So you would pay this price even if you switch from Perl to C.

The last one is important. You need to have a realistic answer. Are you really expecting 8 million hits per
day? What is the expected peak load, and what kind of response time do you need to guarantee? Remem-
ber that this numbers might change drastically when you apply code changes and your site becomes more
popular. Remember that when the you get a very high hits rate, the requirements wouldn’t grow lineary by
exponentialy!

2.4 Sharing Memory
A very important point is the sharing of memory. If your OS supports this (and most sane systems do),
you might save more memory by sharing it between child processes. This is only possible when you
preload code at server startup. However during a child process’ life, its memory pages becomes unshared
and there is no way we can control perl to make it allocate memory so (dynamic) variables land on differ-
ent memory pages than constants, that’s why the copy-on-write effect (will explain in a moment) will hit
almost at random. If you are pre-loading many modules you might be able to balance the memory that
stays shared against the time for an occasional fork by tuning the MaxRequestsPer Child to a point
where you restart before too much becomes unshared. In this case the MaxRequestsPer Child is very
specific to your scenario. You should do some measurements and you might see if this really makes a
difference and what a reasonable number might be. Each time a child reaches this upper limit and restarts
it should release the unshared copies and the new child will inherit pages that are shared until it scribbles
on them.

It is very important to understand that your goal is not to have MaxRequestsPer Child to be 10000.
Having a child serving 300 requests on precompiled code is already a huge speedup, so if it is 100 or
10000 it does not really matter if it saves you the RAM by sharing. Do not forget that if you preload most
of your code at the server startup, the fork to spawn a new child will be very very fast, because it inherits
most of the preloaded code and the perl interpreter from the parent process. But than, during the work of
the child, its memory pages (which aren’t really its yet, it uses the parent’s pages) are getting dirty (origi-
nally inherited and shared variables are getting updated/modified) and the copy-on-write happens, which
reduces the number of shared memory pages - thus enlarging the memory demands. Killing the child and
respawning a new one, allows to get the pristine shared memory from the parent process again.

The conclusion is that MaxRequestsPer Child should not be too big, otherwise you loose the benefits
of the memory sharing.

2.5 How Shared My Memory Is
You’ve probably noticed that the word shared is being repeated many times in many things related to
mod_perl. Indeed, shared memory might save you a lot of money, since with sharing in place you can run
many more servers than without it.

How much shared memory do you have? You can see it by either using the memory utils that comes with
your system or you can deploy GTop module:

 4 Mar 200012

Stas Bekman2.4 Sharing Memory

 print "Shared memory of the current process: ",
 GTop->new->proc_mem($$)->share,"\n";

 print "Total shared memory: ",
 GTop->new->mem->share,"\n";

When you watch the output of the top utility, don’t confuse RSS (or RES) column with SHARE column
-- RES is a RESident memory, which is a size of pages currently swapped in.

2.6 Preload Perl modules at server startup
Use the Perl Require and PerlMod ule directives to load commonly used modules such as CGI.pm ,
DBI and etc., when the server is started. On most systems, server children will be able to share the code
space used by these modules. Just add the following directives into httpd.conf :

 PerlModule CGI;
 PerlModule DBI;

But even a better approach is to create a separate startup file (where you code in plain perl) and put there
things like:

 use DBI;
 use Carp;

Then you require() this startup file with help of Perl Require directive from httpd.conf , by
placing it before the rest of the mod_perl configuration directives:

 PerlRequire /path/to/start-up.pl

CGI.pm is a special case. Ordinarily CGI.pm autoloads most of its functions on an as-needed basis. This
speeds up the loading time by deferring the compilation phase. However, if you are using mod_perl,
FastCGI or another system that uses a persistent Perl interpreter, you will want to precompile the methods
at initialization time. To accomplish this, call the package function compile() like this:

 use CGI ();
 CGI->compile(’:all’);

The arguments to compile() are a list of method names or sets, and are identical to those accepted by
the use() and import() operators. Note that in most cases you will want to replace ’:all’ with tag
names you really use in your code, since generally only a subset of subs is actually being used.

2.6.1 Preload Perl modules - Real Numbers

I have conducted a few tests to benchmark the memory usage when some modules are preloaded. The first
set of tests checks the memory use with Library Perl Module preload (only CGI.pm). The second set
checks the compile method of CGI.pm . The third test checks the benefit of Library Perl Module preload
but a few of them (to see more memory saved) and also the effect of precompiling the Registry modules
with Apache::Registry Loader .

13 4 Mar 2000

2.6 Preload Perl modules at server startupmod_perl tutorial: Performance. Benchmarks.

1. In the first test, the following script was used:

 use strict;
 use CGI ();
 my $q = new CGI;
 print $q->header;
 print $q->start_html,$q->p("Hello");

Server restarted

Before the CGI.pm preload: (No other modules preloaded)

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 87004 0.0 0.0 1060 1524 - A 16:51:14 0:00 httpd
 httpd 240864 0.0 0.0 1304 1784 - A 16:51:13 0:00 httpd

After running a script which uses CGI’s methods (no imports):

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 188068 0.0 0.0 1052 1524 - A 17:04:16 0:00 httpd
 httpd 86952 0.0 1.0 2520 3052 - A 17:04:16 0:00 httpd

Observation: child httpd has grown up by 1268K

Server restarted

After the CGI.pm preload:

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 240796 0.0 0.0 1456 1552 - A 16:55:30 0:00 httpd
 httpd 86944 0.0 0.0 1688 1800 - A 16:55:30 0:00 httpd

after running a script which uses CGI’s methods (no imports):

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 86872 0.0 0.0 1448 1552 - A 17:02:56 0:00 httpd
 httpd 187996 0.0 1.0 2808 2968 - A 17:02:56 0:00 httpd

Observation: child httpd has grown up by 1168K, 100K less then without preload - good!

Server restarted

After CGI.pm preloaded and compiled with CGI->compile(’:all’);

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 86980 0.0 0.0 2836 1524 - A 17:05:27 0:00 httpd
 httpd 188104 0.0 0.0 3064 1768 - A 17:05:27 0:00 httpd

After running a script which uses CGI’s methods (no imports):

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 86980 0.0 0.0 2828 1524 - A 17:05:27 0:00 httpd
 httpd 188104 0.0 1.0 4188 2940 - A 17:05:27 0:00 httpd

 4 Mar 200014

Stas Bekman2.6.1 Preload Perl modules - Real Numbers

Observation: child httpd has grown up by 1172K No change! So what does CGI->compile(’:all’) help? I
think it’s because we never use all of the methods CGI provides - so in real use it’s faster. So you might
want to compile only the tags you are about to use - then you will benefit for sure.

2. I have tried the second test to find it. I run the script:

 use strict;
 use CGI qw(:all);
 print header,start_html,p("Hello");

Server restarted

After CGI.pm was preloaded and NOT compiled with CGI->compile(’:all’):

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 17268 0.0 0.0 1456 1552 - A 18:02:49 0:00 httpd
 httpd 86904 0.0 0.0 1688 1800 - A 18:02:49 0:00 httpd

After running a script which imports symbols (all of them):

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 17268 0.0 0.0 1448 1552 - A 18:02:49 0:00 httpd
 httpd 86904 0.0 1.0 2952 3112 - A 18:02:49 0:00 httpd

Observation: child httpd has grown up by 1264K

Server restarted

After CGI.pm was preloaded and compiled with CGI->compile(’:all’):

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 86812 0.0 0.0 2836 1524 - A 17:59:52 0:00 httpd
 httpd 99104 0.0 0.0 3064 1768 - A 17:59:52 0:00 httpd

After running a script which imports symbols (all of them):

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 86812 0.0 0.0 2832 1436 - A 17:59:52 0:00 httpd
 httpd 99104 0.0 1.0 4884 3636 - A 17:59:52 0:00 httpd

Observation: child httpd has grown by 1868K. Why? Isn’t CGI::compile(’:all’) supposed to
make children to share the compiled code with parent? It does works as advertised, but if you pay atten-
tion in the code we have called only three CGI.pm ’s methods - just saying use CGI qw(:all)
doesn’t mean we compile the all available methods - we just import their names. So actually this test is
misleading. Execute compile() only on the methods you are actually using and then you will see the
difference.

3. The third script:

15 4 Mar 2000

2.6.1 Preload Perl modules - Real Numbersmod_perl tutorial: Performance. Benchmarks.

 use strict;
 use CGI;
 use Data::Dumper;
 use Storable;
 [and many lines of code, lots of globals - so the code is huge!]

Server restarted

Nothing preloaded at startup:

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 90962 0.0 0.0 1060 1524 - A 17:16:45 0:00 httpd
 httpd 86870 0.0 0.0 1304 1784 - A 17:16:45 0:00 httpd

Script using CGI (methods), Storable, Data::Dumper called:

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 90962 0.0 0.0 1064 1436 - A 17:16:45 0:00 httpd
 httpd 86870 0.0 1.0 4024 4548 - A 17:16:45 0:00 httpd

Observation: child httpd has grown by 2764K

Server restarted

Preloaded CGI (compiled), Storable, Data::Dumper at startup:

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 26792 0.0 0.0 3120 1528 - A 17:19:21 0:00 httpd
 httpd 91052 0.0 0.0 3340 1764 - A 17:19:21 0:00 httpd

Script using CGI (methods), Storable, Data::Dumper called

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 26792 0.0 0.0 3124 1440 - A 17:19:21 0:00 httpd
 httpd 91052 0.0 1.0 6568 5040 - A 17:19:21 0:00 httpd

Observation: child httpd has grown by 3276K. Ouch: 512K more!!!

The reason is that when you preload at the startup all of the methods, they all are being precompiled, there
are many of them and they take a big chunk of memory. If you don’t use the compile() method, only
the functions that are being used will be compiled. Yes, it will slightly slow down the first reposnse of
each process, but the actuall memory usage will be lower. BTW, if you write in the script:

 use CGI qw(all);

Only the symbols of all functions are being imported. While they are taking some space, it’s smaller than
the space that a compiled code of these functions might occupy.

Server restarted

 4 Mar 200016

Stas Bekman2.6.1 Preload Perl modules - Real Numbers

All the above modules + the above script PreCompiled with Apache::Registry Loader at startup:

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 43224 0.0 0.0 3256 1528 - A 17:23:12 0:00 httpd
 httpd 26844 0.0 0.0 3488 1776 - A 17:23:12 0:00 httpd

Script using CGI (methods), Storable, Data::Dumper called:

 USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
 root 43224 0.0 0.0 3252 1440 - A 17:23:12 0:00 httpd
 httpd 26844 0.0 1.0 6748 5092 - A 17:23:12 0:00 httpd

Observation: child httpd has grown even more 3316K ! Does not seem to be good!

Summary:

1. Library Perl Modules Preloading gave good results everywhere.

2. CGI.pm ’s compile() method seems to use even more memory. It’s because we never use all of the
methods CGI provides. Do compile() only the tags that you are going to use and you will save the
overhead of the first call for each has not yet been called method, and the memory - since compiled code
will be shared across all the children.

3. Apache::Registry Loader might make scripts load faster on the first request after the child has
just started but the memory usage is worse!!! See the numbers by yourself.

HW/SW used : The server is apache 1.3.2, mod_perl 1.16 running on AIX 4.1.5 RS6000 1G RAM.

2.7 Preload Registry Scripts
Apache::Registry Loader compiles Apache::Registry scripts at server startup. It can be a
good idea to preload the scripts you are going to use as well. So the code will be shared among the chil-
dren.

Here is an example of the use of this technique. This code is included in a Perl Require ’d file, and
walks the directory tree under which all registry scripts are installed. For each .pl file encountered, it
calls the Apache::Registry Loader ::handler() method to preload the script in the parent
server (before pre-forking the child processes):

 use File::Find ’finddepth’;
 use Apache::RegistryLoader ();
 {
 my $perl_dir = "perl/";
 my $rl = Apache::RegistryLoader->new;
 finddepth(sub {
 return unless /\.pl$/;
 my $url = "/$File::Find::dir/$_";
 print "pre-loading $url\n";

 my $status = $rl->handler($url);
 unless($status == 200) {

17 4 Mar 2000

2.7 Preload Registry Scriptsmod_perl tutorial: Performance. Benchmarks.

 warn "pre-load of ‘$url’ failed, status=$status\n";
 }
 }, $perl_dir);
 }

Note that we didn’t use the second argument to handler() here, as module’s manpage suggests. To
make the loader smarter about the uri->filename translation, you might need to provide a trans() func-
tion to translate the uri to filename. URI to filename translation normally doesn’t happen until HTTP
request time, so the module is forced to roll its own translation. If filename is omitted and a trans()
routine was not defined, the loader will try using the URI relative to ServerRoot.

2.8 Global vs Fully Qualified Vari ables
It’s always a good idea to stay away from global variables when possible. Some variables must be global
so Perl can see them, such as a module’s @ISA or $VERSION variables (or fully qualified @MyMod-
ule::ISA). In common practice, a combination of strict and vars pragmas keeps modules clean and
reduces a bit of noise. However, vars pragma also creates aliases as the Exporter does, which eat up
more memory. When possible, try to use fully qualified names instead of use vars. Example:

 package MyPackage;
 use strict;
 @MyPackage::ISA = qw(...);
 $MyPackage::VERSION = "1.00";

vs.

 package MyPackage;
 use strict;
 use vars qw(@ISA $VERSION);
 @ISA = qw(...);
 $VERSION = "1.00";

2.9 PerlSetupEnv Off
PerlSe tu pEnv Off is another optimization you might consider.

mod_perl fiddles with the environment to make it appear as if the script were being called under the CGI
protocol. For example, the $ENV{QUERY_STRING} environment variable is initialized with the contents
of Apache::args(), and $ENV{SERVER_NAME} is filled in from the value returned by
Apache::server_hostname().

But %ENV population is expensive. Those who have moved to the Perl Apache API no longer need this
extra %ENV population, can gain by turning it Off .

By default it is On.

Note that you can still set ENV variables. e.g. when you use the following configuration:

 4 Mar 200018

Stas Bekman2.8 Global vs Fully Qualified Variables

 <Location /perl>
 PerlSetupEnv Off
 PerlSetEnv TEST hi
 SetHandler perl-script
 PerlHandler Apache::RegistryNG->handler
 Options +ExecCGI
 </Location>

A script having a print Data::Dumper(\%ENV) line, prints:

 $VAR1 = {
 ’GATEWAY_INTERFACE’ => ’CGI-Perl/1.1’,
 ’MOD_PERL’ => ’mod_perl/1.21_01-dev’,
 ’PATH’ => ’/usr/lib/perl5/5.00503:... snipped ...’,
 ’TEST’ => ’hi’
 };

2.10 Adding a Proxy Server in http Accelerator Mode
At the beginning there were 2 servers: one plain apache server, which was very light, and configured to
serve static objects, the other mod_perl enabled (very heavy) and configured to serve mod_perl scripts.
We named them httpd_docs and httpd_perl respectively.

The two servers coexist at the same IP address by listening to different ports: httpd_docs listens to
port 80 (e.g. http://www.nowhere.com/images/test.gif) and httpd_perl listens to port 8080 (e.g.
http://www.nowhere.com:8080/perl/test.pl). Note that I did not write http://www.nowhere.com:80 for the
first example, since port 80 is the default port for the http service. Later on, I will be changing the configu-
ration of the httpd_docs server to make it listen to port 81.

Now I am going to convince you that you want to use a proxy server (in the http accelerator mode). The
advantages are:

Allow serving of static objects from the proxy’s cache (objects that previously were entirely served
by the httpd_docs server).

You get less I/O activity reading static objects from the disk (proxy serves the most ‘‘popular’’
objects from RAM - of course you benefit more if you allow the proxy server to consume more
RAM). Since you do not wait for the I/O to be completed you are able to serve static objects much
faster.

The proxy server acts as a sort of output buffer for the dynamic content. The mod_perl server sends
the entire response to the proxy and is then free to deal with other requests. The proxy server is
responsible for sending the response to the browser. So if the transfer is over a slow link, the
mod_perl server is not waiting around for the data to move.

Using numbers is always more convincing :) Let’s take a user connected to your site with 28.8 kbps
(bps == bits/sec) modem. It means that the speed of the user’s link is 28.8/8 = 3.6 kbytes/sec. I
assume an average generated HTML page to be of 10kb (kb == kilobytes) and an average script that
generates this output in 0.5 secs. How long will the server wait before the user gets the whole output
response? A simple calculation reveals pretty scary numbers - it will have to wait for another 6 secs

19 4 Mar 2000

2.10 Adding a Proxy Server in http Accelerator Modemod_perl tutorial: Performance. Benchmarks.

http://www.nowhere.com:80/

http://www.nowhere.com:8080/perl/test.pl

http://www.nowhere.com/images/test.gif

(20kb/3.6kb), when it could serve another 12 (6/0.5) dynamic requests in this time.

This very simple example shows us that we need only one twelfth the number of children running,
which means that we will need only one twelfth of the memory (not quite true because some parts of
the code are shared).

But you know that nowadays scripts often return pages which are blown up with javascript code and
similar, which can make them of 100kb size and the download time will be of the order of... (This
calculation is left to you as an exercise :)

Many users like to open many browser windows and do many things at once (download files and
browse graphically heavy sites). So the speed of 3.6kb/sec we were assuming before, may often be
5-10 times slower.

We are going to hide the details of the server’s implementation. Users will never see ports in the
URLs (more on that topic later). You can have a few boxes serving the requests, and only one serving
as a front end, which spreads the jobs between the servers in a way that you can control. You can
actually shut down a server, without the user even noticing, because the front end server will dispatch
the jobs to other servers. (This is called a Load Ballancing and it’s a pretty big issue, which will not
be discussed in this document.)

For security reasons, using any httpd accelerator (or a proxy in httpd accelerator mode) is essential
because you do not let your internal server get directly attacked by arbitrary packets from whomever.
The httpd accelerator and internal server communicate in expected HTTP requests. This allows for
only your public ‘‘bastion’’ accelerating www server to get hosed in a successful attack, while
leaving your internal data safe.

The disadvantages are:

Of course there are drawbacks. Luckily, these are not functionality drawbacks, but they are more
administration hassle. You have another daemon to worry about, and while proxies are generally
stable, you have to make sure to prepare proper startup and shutdown scripts, which are run at boot
and reboot as appropriate. Also, you might want to set up the crontab to run a watchdog script.

Proxy servers can be configured to be light or heavy, the admin must decide what gives the highest
performance for his application. A proxy server like squid is light in the concept of having only one
process serving all requests. But it can appear pretty heavy when it loads objects into memory for
faster service.

If you are on a local area network (LAN), then the big benefit of the proxy buffering the output and
feeding a slow client is gone. You are probably better off sticking with a straight mod_perl server in this
case.

 4 Mar 200020

Stas Bekman2.10 Adding a Proxy Server in http Accelerator Mode

2.11 KeepAlive
If your mod_perl server’s httpd.conf includes the following directives:

 KeepAlive On
 MaxKeepAliveRequests 100
 KeepAliveTimeout 15

you’ve gotten a real performance penalty, since after completing each request processing, the process will
wait for KeepAlive Time out seconds before closing the connection and thus not serving other requests
at this time. You will need many more processes on a server with high traffic.

If you use some server status reporting tools, you will see the process in K status when it’s in
KeepAlive status.

Most chances are that you don’t want this feature to be enabled. So set it Off with:

 KeepAlive Off

the other two directive don’t matter anymore.

You might want to consider to enable this option if the client’s browser needs to bring more than one
object from your server at once (for a single HTML page). If this is the situation you actually save the
connection overhead for all requests but the first one.

For example if you have a page with 10 ad banners, which is not uncommon today, you server will work
more effectively if a single process will serve them all during a single connection. You client will get a
little slower responce, since banners will be brought one at a time and not all together if each IMG tag
would open a separate connection.

There are definite advantages to keep-alive from a TCP perspective since fresh connections will incur not
only the 3 way-TCP handshake but also be penalised by slow-start. So while turning it off may help the
memory usage on the server, it will disadvantage the client from a network speed perspective.

You probably have followed the advice of sending all the static object requests to a plain Apache server.
And since most of the pages include more than one static unique image, you better keep the default setting
of the non-mod_perl server, which has the KeepAlive directive On. Probably reducing a little the
number of timeout seconds is a good idea too.

One option I suppose would be for the proxy/accelerator to keep the connection open to the client but
make individual connections to the server, read the response, buffer it for sending to the client and close
the server connection (making new connections to the server as required by the client requests obviously).

2.12 Upload/Download of Big Files
If some particular script’s main functionality is uploading or downloading of big files, you probably want
it to be executed on plain apache server under mod_cgi. Taken of course that the script requires none of
the functionalities the mod_perl server provides. Like custom authentication handlers.

21 4 Mar 2000

2.11 KeepAlivemod_perl tutorial: Performance. Benchmarks.

You don’t want to tie up your precious mod_perl backend server children doing something as long and
dumb as transfering a file.

Also, the user won’t really see any important performance benefits from mod_perl anyway, since the
upload may take up to several minutes, and the overhead saved by mod_perl is typically under one
second.

2.13 Forking or Executing subprocesses from mod_perl
Generally you should not fork from your mod_perl scripts, since when you do -- you are forking the entire
apache web server, lock, stock and barrel. Not only is your perl code being duplicated, but so is mod_ssl,
mod_rewrite, mod_log, mod_proxy, mod_spelling or whatever modules you have used in your server, all
the core routines and so on.

A much wiser approach would be to spawn a sub-process, hand it the information it needs to do the task,
and have it detach (close x3 + setsid()). This is wise only if the parent who spawns this process,
immediately continue, you do not wait for the sub-process to complete. This approach is suitable for a
situation when you want to trigger a long time taking process through the web interface, like processing
some data, sending email to thousands of subscribed users and etc. Otherwise, you should convert the
code into a module, and use its functions or methods to call from CGI script.

Just making a system() call defeats the whole idea behind mod_perl, perl interpreter and modules
should be loaded again for this external program to run.

Basically, you would do:

 $params=FreezeThaw::freeze(
 [all data to pass to the other process]
);
 system("program.pl $params");

and in program.pl :

 use POSIX qw(setsid);
 @params=FreezeThaw::thaw(shift @ARGV);
 # check that @params is ok
 close STDIN;
 close STDOUT;
 close STDERR;
 # you might need to reopen the STDERR
 # open STDERR, ">/dev/null";
 setsid(); # to detach

At this point, program.pl is running in the ‘‘background’’ while the system() returns and permits
apache to get on with life.

This has obvious problems. Not the least of which is that @params must not be bigger then whatever
your architecture’s limit is (could depend on your shell).

 4 Mar 200022

Stas Bekman2.13 Forking or Executing subprocesses from mod_perl

Also, the communication is only one way.

However, you might want be trying to do the ‘‘wrong thing’’. If what you want is to send information to
the browser and then do some post-processing, look into Perl CleanupHan dler .

If you are interested in more deep level details, this is what actually happens when you fork and make a
system call, like

 system("echo Hi"),CORE::exit(0) unless fork();

which is might be more familiar in this form:

 if (fork){
 #do nothing
 } else {
 system("echo Hi");
 CORE::exit(0);
 }

What happens is that fork() gives you 2 execution paths and the child gets virtual memory sharing a
copy of the program text (read only) and sharing a copy of the data space copy-on-write (remember why
you pre-load modules in mod_perl?). In the above code a parent will immediately continue with the code
that comes up after the fork, while the forked process will execute system("echo Hi") and then
terminate itself.

Notice that I use CORE::exit and not exit which would be automatically overriden by
Apache::exit if used in conjunction with Apache::Registry and friends.

The only work is setting up the page tables for the virtual memory and the second process goes on its
separate way.

Next, Perl will find /bin/echo along the search path, and invoke it directly. Perl system() is *not*
system(3) [C-library]. Only when the command has shell meta-chars does Perl invoke a real shell.
That’s a *very* nice optimization.

Only if you do:

 system "sh -c ’echo foo’"

OS actually parses your command with a shell so you exec() a copy of /bin/sh , but since one is
almost certainly already running somewhere, the system will notice that (via the disk inode reference) and
replace your virtual memory page table with one pointed at the already-loaded program code plus your
own data space. Then the shell parses the passed command.

Since it is echo , it will execute it as a built-in in the latter example or a /bin/echo in the former and
be done, but this is only an example. You aren’t calling system("echo Hi") in your mod_perl
scripts, right? Since most other real things (heavy programs executed as a subprocess) would involve
repeating the process to load the specified command or script (it might involve some actual demand
paging from the program file if you execute new code).

23 4 Mar 2000

2.13 Forking or Executing subprocesses from mod_perlmod_perl tutorial: Performance. Benchmarks.

The only place you see real overhead from this scheme is when the parent process is huge (unfortunately
like mod_perl...) and the page table becomes large as a side effect. The whole point of mod_perl is to
avoid having to fork() / exec() something on every hit, though. Perl can do just about anything by
itself. However, you probably won’t get in trouble until you hit about 30 forks/sec on a so-so pentium.

Now let’s get to the gory details of forking. Normally, every process has its parent. Many processes are
children of the init process, whose PID equals to 1. When you fork a process you must wait() or
waitpid() for it to finish. If you don’t wait for it becomes a zombie.

Zombie, is a process that doesn’t have a father. When the child quits, it reports the termination to his
parent. If no one wait()s to collect the exit status of the child, it gets ‘‘confused’’ and becomes a ghost
process, that can be seen, but not killed. It will be killed only when you stop the httpd process that
spawned it! (generally top()/ps() utilities display these processes with <defunc > tag, and you will
see an increment of the zombies counter reported when doing top().) These zombie processes can take
up system resources and are generally undesirable.

So the proper fork is:

 print "Content-type: text/plain\n\n";

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
 } else {
 # do something
 CORE::exit(0);
 }

But in most cases the only reason you would want to fork is when you need to spawn a process that would
take a lot of time to complete. So if the server child that spawns this process has to wait for it to finish,
you gained nothing. You cannot neither wait for its completion, nor continue because you will get yet
another zombie process.

The simplest solution is to ignore your dead children (this doesn’t work everywhere, however).

 $SIG{CHLD} = IGNORE;

When you set CHLD signal handler to IGNORE, all the processes will be collected by the init process
and prevent from them to become zombies.

Note, that you cannot localize this setting with local() . If you do, it wouldn’t take the desired effect.

The other thing that you must do -- is to close all the pipes to the connection socket that were opened by
the parent process (a STDIN and a STDOUT) and inherited by the child, so the parent will be able to
complete the request and free itself for serving other requests. You may need to close and reopen a
STDERR filehandler (It’s opened to append to the error_log file as inhereted by parent, so chances are that
you want it to leave untouched).

 4 Mar 200024

Stas Bekman2.13 Forking or Executing subprocesses from mod_perl

So now the code would look like:

 print "Content-type: text/plain\n\n";

 $SIG{CHLD} = IGNORE;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
 } else {
 close STDIN;
 close STDOUT;
 close STDERR;
 # do something long lasting
 CORE::exit(0);
 }

Another more portable, but slightly more expensive solution is to use a double fork approach.

 print "Content-type: text/plain\n\n";

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 } else {
 defined (my $grandkid = fork) or die "Kid cannot fork: $!\n";
 if ($grandkid) {
 CORE::exit(0);

 } else {
 # code here
 close STDIN;
 close STDOUT;
 close STDERR;
 # do something long lasting
 CORE::exit(0);
 }
 }

Grandkid becomes a "child of init" (parent process ID is 1).

Note that the last two solutions do allow you to know the exit status of the process, but in our case we
don’t want to.

One more solution is to use a different SIGCHLD handler:

 use POSIX ’WNOHANG’;
 $SIG{CHLD} = sub { while(waitpid(-1,WNOHANG)>0) {} };

Which is usefull when you fork() more than once process. The handler could call wait() as well, but
for a variety of reasons involving tge handling of stopped processes and the rare event in which two chil-
dren exit at nearly the same moment, the best technique is to call waitpid() in a tight loop with a first
argument of -1 and a second argument of WNOHANG. Together these arguments tell waitpid() to reap

25 4 Mar 2000

2.13 Forking or Executing subprocesses from mod_perlmod_perl tutorial: Performance. Benchmarks.

the next child that’s available, and prevent the call from blocking if there happens to be no child ready
from reaping. The handler will loop untill waitpid() returns a negative number or zero, indicating that
no more reapable children remain.

You will probably want to open your own log file in the spawned process and log some info so you know
what have happened there. At least while debugging your code.

Check also Apache::SubPro cess for a better system and exec implementations for mod_perl (use
CPAN!).

2.14 Memory leakage
Scripts under mod_perl can very easily leak memory! Global variables stay around indefinitely, lexical
variables (declared with my() are destroyed when they go out of scope, provided there are no references
to them from outside of that scope.

Perl doesn’t return the memory it acquired from the kernel. It does reuse it though!

First example demonstrates reading in a whole file:

 open IN, $file or die $!;
 local $/ = undef; # will read the whole file in
 $content = <IN>;
 close IN;

If your file is 5Mb, the child who served that script will grow exactly by that size. Now if you have 20
children and all of them will serve this CGI, all of them will consume additional 20*5M = 100M of RAM!
If that’s the case, try to use other approaches of processing the file, if possible of course. Try to process a
line at a time and print it back to the file. (If you need to modify the file itself, use a temporary file. When
finished, overwrite the source file, make sure to provide a locking mechanism!)

Second example demonstrates copying variables between functions (passing variables by value). Let’s
use the example above, assuming we have no choice but to read the whole file before any data processing
takes place. Now you have some imagine process() subroutine that processes the data and returns it
back. What happens if you pass the $content by value? You have just copied another 5M and the child
has grown by another 5M in size (watch your swap space!) now multiply it again by factor of 20 you have
200M of wasted RAM, which will be apparently reused but it’s a waste! Whenever you think the variable
can grow bigger than few Kb, pass it by reference!

Once I wrote a script that passed a content of a little flat file DataBase to a function that processed it by
value -- it worked and it was processed fast, but with a time the DataBase became bigger, so passing it by
value was an overkill -- I had to make a decision, whether to buy more memory or to rewrite the code. It’s
obvious that adding more memory will be merely a temporary solution. So it’s better to plan ahead and
pass the variables by reference, if a variable you are going to pass might be bigger than you think at the
time of your coding process. There are a few approaches you can use to pass and use variables passed by
reference. For example:

 4 Mar 200026

Stas Bekman2.14 Memory leakage

 my $content = qq{foobarfoobar};
 process(\$content);
 sub process{
 my $r_var = shift;
 $$r_var =~ s/foo/bar/gs;
 # nothing returned - the variable $content outside has been
 # already modified
 }

 @{$var_lr} -- dereferences an array
 %{$var_hr} -- dereferences a hash

For more info see perldoc perlref .

Another approach would be to directly use a @_ array. Using directly the @_ array serves the job of
passing by reference!

 process($content);
 sub process{
 $_[0] =~ s/foo/bar/gs;
 # nothing returned - the variable $content outside has been
 # already modified
 }

From perldoc perlsub :

 The array @_ is a local array, but its elements are aliases for
 the actual scalar parameters. In particular, if an element
 $_[0] is updated, the corresponding argument is updated (or an
 error occurs if it is not possible to update)...

Be careful when you write this kind of subroutines, since it can confuse a potential user. It’s not obvious
that call like process($content); modifies the passed variable -- programmers (which are the users
of your library in this case) are used to subs that either modify variables passed by reference or return the
processed variable (e.g. $content=process($content);).

Third example demonstrates a work with DataBases. If you do some DB processing, many times you
encounter the need to read lots of records into your program, and then print them to the browser after they
are formatted. (I don’t even mention the horrible case where programmers read in the whole DB and then
use perl to process it!!! Use a relational DB and let the SQL do the job, so you get only the records you
need!!!).

We will use DBI for this (assume that we are already connected to the DB) (refer to perldoc DBI for a
complete manual of the DBI module):

 $sth->execute;
 while(@row_ary = $sth->fetchrow_array;) {
 <do DB accumulation into some variable>
 }
 <print the output using the the data returned from the DB>

27 4 Mar 2000

2.14 Memory leakagemod_perl tutorial: Performance. Benchmarks.

In the example above the httpd_process will grow up by the size of the variables that have been allocated
for the records that matched the query. (Again remember to multiply it by the number of the children your
server runs!).

A better approach is to not accumulate the records, but rather print them as they are fetched from the DB.
Moreover, we will use the bind_col() and $sth->fetchrow_arrayref() (aliased to
$sth->fetch()) methods, to fetch the data in the fastest possible way. The example below prints a
HTML TABLE with matched data, the only memory that is being used is a @cols array to hold tempo-
rary row values:

 my @select_fields = qw(a b c);
 # create a list of cols values
 my @cols = ();
 @cols[0..$#select_fields] = ();
 $sth = $dbh->prepare($do_sql);
 $sth->execute;
 # Bind perl variables to columns.
 $sth->bind_columns(undef,\(@cols));
 print "<TABLE>";
 while($sth->fetch) {
 print "<TR>",
 map("<TD>$_</TD>", @cols),
 "</TR>";
 }
 print "</TABLE>";

Note: the above method doesn’t allow you to know how many records have been matched. The
workaround is to run an identical query before the code above where you use SELECT count(*) ...
instead of ’SELECT * ... to get the number of matched records. It should be much faster, since you
can remove any SORTBY and alike attributes.

2.15 Checking script modification times
Under Apache::Registry the requested CGI script is always being stat() ’ed to check whether it
was modified. It adds a very little overhead, but if you are into squeezing all the jouces from the server,
you might want to save this call. If you do -- take a look at Apache::RegistryBB module.

2.16 Cached stat() calls
When you do a stat() or its variations (-M - modification time, -A last access time, -C inode-change
time, and other), the information is being cached, so if you need to make an additional check for the same
file, save the overhead of this check and use a _ variable instead. For example when testing for existance
and read permissions you might use:

 my $filename = "./test";
 # two stat() calls
 print "OK\n" if -e $filename and -r $filename;
 my $mod_time = (-M $filename) * 24 * 60 * 60;
 print "$filename was modified $mod_time seconds ago\n";

 4 Mar 200028

Stas Bekman2.15 Checking script modification times

or the more efficient (two stat() syscalls saved)!:

 my $filename = "./test";
 # two stat() calls
 print "OK\n" if -e $filename and -r _;
 my $mod_time = (-M _) * 24 * 60 * 60;
 print "$filename was modified $mod_time seconds ago\n";

Remember that with mod_perl you might get negative times when you use -M and alike file tests. -M tests
the difference in time between file modification file and the start of the script that performs this check.
Because ̂T variable is not being reset on each script invocation, and equal to the time the process has
been forked at, you might want to perform:

 $^T = time();

at the beginning of your scripts to get the regular perl script behaviour of file tests

2.17 Be carefull with symbolic links
As you know Apache::Registry caches the scripts based on their URI. If you have the same script
that can be reached by different URIs, possible if you have used a symbolic links, like:

 % ln -s /home/httpd/perl/news/news.pl /home/httpd/perl/news.pl

Now the script can be reached as /news/news.pl and /news.pl URIs. It doesn’t really matter until
you advertise the two URIs, and users reach the same script from both of them. The moment this happens,
you will get the same script cached twice!

Use /perl-status location handler to see all the compiled scripts and their packages. In our example when
requesting: http://localhost/perl-status?rgysubs you would see:

 Apache::ROOT::perl::news::news_2epl
 Apache::ROOT::perl::news_2epl

after the both URIs have been requested from the same child process that happened to serve your request.
To make the debug easier run the server in a single mode.

2.18 Limit ing the size of the processes
Apache::Size Limit allows you to kill off Apache httpd processes if they grow too large. see perldoc
Apache::Size Limit for more details.

By using this module, you should be able to discontinue using the Apache configuration directive
MaxRequestsPer Child , although for some folks, using both in combination does the job.

29 4 Mar 2000

2.17 Be carefull with symbolic linksmod_perl tutorial: Performance. Benchmarks.

http://localhost/perl-status?rgysubs

2.19 Limit ing the resources used by httpd children
Apache::Resource uses the BSD::Resource module, which uses the C function setr limit ()
to set limits on system resources such as memory and cpu usage.

To configure use:

 PerlModule Apache::Resource
 # set child memory limit in megabytes
 # (default is 64 Meg)
 PerlSetEnv PERL_RLIMIT_DATA 32:48

 # set child CPU limit in seconds
 # (default is 360 seconds)
 PerlSetEnv PERL_RLIMIT_CPU 120

 PerlChildInitHandler Apache::Resource

If you configure Apache::Status , it will let you review the resources set this way.

The following limit values are in megabytes: DATA, RSS, STACK, FSIZE , CORE, MEMLOCK; all others
are treated as their natural unit. Prepend PERL_RLIMIT_ for each one you want to use. Refer to setr -
limit man page on your OS for other possible resources.

If the value of the variable is of the form S:H , S is treated as the soft limit, and H is the hard limit. If it is
just a single number, it is used for both soft and hard limits.

To debug add:

 <Perl>
 $Apache::Resource::Debug = 1;
 require Apache::Resource;
 </Perl>
 PerlChildInitHandler Apache::Resource

and look in the error_log to see what it’s doing.

Refer to perldoc Apache::Resource and man 2 setr limit for more info.

2.20 Limit ing the request rate speed (robots blocking)
A limi tation of using pattern matching to identify robots is that it only catches the robots that you know
about, and only those that identify themselves by name. A few devious robots masquerade as users by
using user agent strings that identify themselves as conventional browsers. To catch such robots, you’ll
have to be more sophisticated.

Apache::SpeedLimit comes for you to help, see:

 4 Mar 200030

Stas Bekman2.19 Limiting the resources used by httpd children

http://www.modperl.com/chapters/ch6.html#Blocking_Greedy_Clients

2.21 Benchmarks. Impressing your Boss and Colleagues.
How much faster is mod_perl than mod_cgi (aka plain perl/CGI)? There are many ways to benchmark the
two. I’ll present a few examples and numbers below. Checkout the bench mark directory of mod_perl
distribution for more examples.

If you are going to write your own benchmarking utility -- use Bench mark module for heavy scripts and
Time::HiRes module for very fast scripts (faster than 1 sec) where you need better time precision.

There is no need to write a special benchmark though. If you want to impress your boss or colleagues, just
take some heavy CGI script you have (e.g. a script that crunches some data and prints the results to
STDOUT), open 2 xterms and call the same script in mod_perl mode in one xterm and in mod_cgi mode
in the other. You can use lwp-get from LWP package to emulate the web agent (browser). (bench -
mark directory of mod_perl distribution includes such an example)

2.21.1 Benchmarking scripts with execution times below 1 second :)

As noted before, for very fast scripts you will have to use the Time::HiRes module, its usage is similar
to the Bench mark ’s.

 use Time::HiRes qw(gettimeofday tv_interval);
 my $start_time = [gettimeofday];
 &sub_that_takes_a_teeny_bit_of_time()
 my $end_time = [gettimeofday];
 my $elapsed = tv_interval($start_time,$end_time);
 print "the sub took $elapsed secs."

2.21.2 PerlHandler’s Benchmarking

At http://perl.apache.org/dist/contrib/ you will find Apache::Timeit package which does Perl Han-
dler ’s Benchmarking.

2.22 Tuning the Apache’s configuration variables for the
best performance
It’s very important to make a correct configuration of the MinSpare Servers , MaxSpare Servers ,
Start Servers , MaxClients , and MaxRequestsPer Child parameters. There are no defaults, the
values of these variable are very important, as if too ‘‘low’’ you will under-use the system’s capabilities,
and if too ‘‘high’’ chances that the server will bring the machine to its knees.

All the above parameters should be specified on the basis of the resources you have. While with a plain
apache server, there is no big deal if you run too many servers (not too many of course) since the
processes are of ~1Mb and aren’t eating a lot of your RAM. Generally the numbers are even smaller if
memory sharing is taking place. The situation is different with mod_perl. I have seen mod_perl processes

31 4 Mar 2000

2.21 Benchmarks. Impressing your Boss and Colleagues.mod_perl tutorial: Performance. Benchmarks.

http://perl.apache.org/dist/contrib/

http://www.modperl.com/chapters/ch6.html#Blocking_Greedy_Clients

of 20Mb and more. Now if you have MaxClients set to 50: 50x20Mb = 1Gb - do you have 1Gb of
RAM? Probably not. So how do you tune these parameters? Generally by trying different combinations
and benchmarking the server. Again mod_perl processes can be of much smaller size if sharing is in place.

Before you start this task you should be armed with a proper weapon. You need a crashme utility, which
will load your server with mod_perl scripts you possess. You need it to have an ability to emulate a
multiuser environment and to emulate multiple clients behavior which will call the mod_perl scripts at
your server simultaneously. While there are commercial solutions, you can get away with free ones which
do the same job. You can use an ApacheBench (ab) utility that comes with apache distribution, a crashme
script which uses LWP::Paral lel ::User Agent or httperf .

Another important issue is to make sure to run testing client (load generator) on a system that is more
powerful than the system being tested. After all we are trying to simulate the Internet users, where many
users are trying to reach your service at once -- since a number of concurrent users can be quite large, your
testing machine much be very powerful and capable to generate a heavy load. Of course you should not
run the clients and the server on the same machine. If you do -- your testing results would be incorrect,
since clients will eat a CPU and a memory that have to be dedicated to the server, and vice versa.

2.22.1 Tuning with ab - ApacheBench

ab is a tool for benchmarking your Apache HTTP server. It is designed to give you an impression on how
much performance your current Apache installation can give. In particular, it shows you how many
requests per secs your Apache server is capable of serving. The ab tool comes bundled with apache source
distribution (and it’s free :).

Let’s try it. We will simulate 10 users concurrently requesting a very light script at
www.nowhere.com:81/test/test.pl . Each ‘‘user’’ makes 10 requests.

 % ./ab -n 100 -c 10 www.nowhere.com:81/test/test.pl

The results are:

 Concurrency Level: 10
 Time taken for tests: 0.715 seconds
 Complete requests: 100
 Failed requests: 0
 Non-2xx responses: 100
 Total transferred: 60700 bytes
 HTML transferred: 31900 bytes
 Requests per second: 139.86
 Transfer rate: 84.90 kb/s received

 Connection Times (ms)
 min avg max
 Connect: 0 0 3
 Processing: 13 67 71
 Total: 13 67 74

 4 Mar 200032

Stas Bekman2.22.1 Tuning with ab - ApacheBench

The only numbers we really care about are:

 Complete requests: 100
 Failed requests: 0
 Requests per second: 139.86

Let’s raise the load of requests to 100 x 10 (10 users, each makes 100 requests)

 % ./ab -n 1000 -c 10 www.nowhere.com:81/perl/access/access.cgi
 Concurrency Level: 10
 Complete requests: 1000
 Failed requests: 0
 Requests per second: 139.76

As expected nothing changes -- we have the same 10 concurrent users. Now let’s raise the number of
concurrent users to 50:

 % ./ab -n 1000 -c 50 www.nowhere.com:81/perl/access/access.cgi
 Complete requests: 1000
 Failed requests: 0
 Requests per second: 133.01

We see that the server is capable of serving 50 concurrent users at an amazing 133 req/sec! Let’s find the
upper boundary. Using -n 10000 -c 1000 failed to get results (Broken Pipe?). Using -n 10000
-c 500 derived 94.82 req/sec. The server’s performance went down with the high load.

The above tests were performed with the following configuration:

 MinSpareServers 8
 MaxSpareServers 6
 StartServers 10
 MaxClients 50
 MaxRequestsPerChild 1500

Now let’s kill a child after a single request, we will use the following configuration:

 MinSpareServers 8
 MaxSpareServers 6
 StartServers 10
 MaxClients 100
 MaxRequestsPerChild 1

Simulate 50 users each generating a total of 20 requests:

 % ./ab -n 1000 -c 50 www.nowhere.com:81/perl/access/access.cgi

The benchmark timed out with the above configuration.... I watched the output of ps as I ran it, the parent
process just wasn’t capable of respawning the killed children at that rate...When I raised the MaxRe-
questsPer Child to 10 I’ve got 8.34 req/sec - very bad (18 times slower!) (You can’t benchmark the
importance of the MinSpare Servers , MaxSpare Servers and Start Servers with this kind of
test).

33 4 Mar 2000

2.22.1 Tuning with ab - ApacheBenchmod_perl tutorial: Performance. Benchmarks.

Now let’s try to return MaxRequestsPer Child to 1500, but to lower the MaxClients to 10 and run
the same test:

 MinSpareServers 8
 MaxSpareServers 6
 StartServers 10
 MaxClients 10
 MaxRequestsPerChild 1500

I’ve got 27.12 req/sec, which is better but still 4-5 times slower (133 with MaxClients of 50)

Summary: I have tested a few combinations of server configuration variables (MinSpare Servers
MaxSpare Servers Start Servers MaxClients MaxRequestsPer Child). And the results we
have received are as follows:

MinSpare Servers , MaxSpare Servers and Start Servers are only important for user response
times (sometimes user will have to wait a bit).

The important parameters are MaxClients and MaxRequestsPer Child . MaxClients should be
not to big so it will not abuse your machine’s memory resources and not too small, when users will be
forced to wait for the children to become free to come serve them. MaxRequestsPer Child should be
as big as possible, to take the full benefit of mod_perl, but watch your server at the beginning to make sure
your scripts are not leaking memory, thereby causing your server (and your service) to die very fast.

Also it is important to understand that we didn’t test the response times in the tests above, but the ability
of the server to respond under a heavy load of requests. If the script that was used to test was heavier, the
numbers would be different but the conclusions are very similar.

The benchmarks were run with:

 HW: RS6000, 1Gb RAM
 SW: AIX 4.1.5 . mod_perl 1.16, apache 1.3.3
 Machine running only mysql, httpd docs and mod_perl servers.
 Machine was _completely_ unloaded during the benchmarking.

After each server restart when I did changes to the server’s configurations, I made sure the scripts were
preloaded by fetching a script at least once by every child.

It is important to notice that none of requests timed out, even if was kept in server’s queue for more than 1
minute! (That is the way ab works, which is OK for the testing purposes but will be unacceptable in the
real world - users will not wait for more than 5-10 secs for a request to complete, and the client (browser)
will timeout in a few minutes.)

Now let’s take a look at some real code whose execution time is more than a few millisecs. We will do
real testing and collect the data in tables for easier viewing.

I will use the following abbreviations:

 4 Mar 200034

Stas Bekman2.22.1 Tuning with ab - ApacheBench

 NR = Total Number of Request
 NC = Concurrency
 MC = MaxClients
 MRPC = MaxRequestsPerChild
 RPS = Requests per second

Running a mod_perl script with lots of mysql queries (the script under test is mysqld bounded)
(http://www.nowhere.com:81/perl/access/access.cgi?do_sub=query_form), with configuration:

 MinSpareServers 8
 MaxSpareServers 16
 StartServers 10
 MaxClients 50
 MaxRequestsPerChild 5000

gives us:

 NR NC RPS comment
 --
 10 10 3.33 # not a reliable statistics
 100 10 3.94
 1000 10 4.62
 1000 50 4.09

Conclusions: Here I wanted to show that when the application is slow -- not due to perl loading, code
compilation and execution, but bounded to some external operation like mysqld querying which made the
bottleneck -- it almost does not matter what load we place on the server. The RPS (Requests per second) is
almost the same (given that all the requests have been served, you have an ability to queue the clients, but
be aware that something that goes to queue means a waiting client and a client (browser) that might time
out!)

Now we will benchmark the same script without using the mysql (perl only bounded code)
(http://www.nowhere.com:81/perl/access/access.cgi), it’s the same script that just returns a HTML form,
without making any SQL queries.

 MinSpareServers 8
 MaxSpareServers 16
 StartServers 10
 MaxClients 50
 MaxRequestsPerChild 5000

 NR NC RPS comment
 --
 10 10 26.95 # not a reliable statistics
 100 10 30.88
 1000 10 29.31
 1000 50 28.01
 1000 100 29.74
 10000 200 24.92
 100000 400 24.95

35 4 Mar 2000

2.22.1 Tuning with ab - ApacheBenchmod_perl tutorial: Performance. Benchmarks.

Conclusions: This time the script we executed was pure perl (not bounded to I/O or mysql), so we see that
the server serves the requests much faster. You can see the Request Per Second (RPS) is almost the
same for any load, but goes lower when the number of concurrent clients goes beyond the MaxClients .
With 25 RPS, the client supplying a load of 400 concurrent clients will be served in 16 secs. But to get
more realistic and assume the max concurrency of 100, with 30 RPS, the client will be served in 3.5 secs,
which is pretty good for a highly loaded server.

Now we will use the server for its full capacity, by keeping all MaxClients alive all the time and
having a big MaxRequestsPer Child , so no server will be killed during the benchmarking.

 MinSpareServers 50
 MaxSpareServers 50
 StartServers 50
 MaxClients 50
 MaxRequestsPerChild 5000

 NR NC RPS comment
 --
 100 10 32.05
 1000 10 33.14
 1000 50 33.17
 1000 100 31.72
 10000 200 31.60

Conclusion: In this scenario there is no overhead involving the parent server loading new children, all the
servers are available, and the only bottleneck is contention for the CPU.

Now we will try to change the MaxClients and to watch the results: Let’s reduce MC to 10.

 MinSpareServers 8
 MaxSpareServers 10
 StartServers 10
 MaxClients 10
 MaxRequestsPerChild 5000

 NR NC RPS comment
 --
 10 10 23.87 # not a reliable statistics
 100 10 32.64
 1000 10 32.82
 1000 50 30.43
 1000 100 25.68
 1000 500 26.95
 2000 500 32.53

Conclusions: A very little difference! Almost no change! 10 servers were able to serve almost with the
same throughput as 50 servers. Why? My guess it’s because of CPU throttling. It seems that 10 servers
were serving requests 5 times faster than when in the test above we worked with 50 servers. In the case
above each child received its CPU time slice 5 times less frequently. So having a big value for
MaxClients , doesn’t mean that the performance will be better. You have just seen the numbers!

 4 Mar 200036

Stas Bekman2.22.1 Tuning with ab - ApacheBench

Now we will start to drastically reduce the MaxRequestsPer Child :

 MinSpareServers 8
 MaxSpareServers 16
 StartServers 10
 MaxClients 50

 NR NC MRPC RPS comment
 --
 100 10 10 5.77
 100 10 5 3.32
 1000 50 20 8.92
 1000 50 10 5.47
 1000 50 5 2.83
 1000 100 10 6.51

Conclusions: When we drastically reduce the MaxRequestsPer Child , the performance starts to
become closer to the plain mod_cgi. Just for comparison with mod_cgi, here are the numbers of this run
with mod_cgi:

 MinSpareServers 8
 MaxSpareServers 16
 StartServers 10
 MaxClients 50

 NR NC RPS comment
 --
 100 10 1.12
 1000 50 1.14
 1000 100 1.13

Conclusion: mod_cgi is much slower :) in test NReq/NClients 100/10 the RPS in mod_cgi was of 1.12
and in mod_perl of 32, which is 30 times faster!!! In the first test each child waited about 100 secs to be
served. In the second and third 1000 secs!

2.22.2 Tuning with httperf

httperf is an utility written by David Mosberger. Just like ApacheBench--it measures the performance of
the webserver.

A sample command line is shown below:

 httperf --server hostname --port 80 --uri /test.html \
 --rate 150 --num-conn 27000 --num-call 1 --timeout 5

This command causes httperf to use the web server on the host with IP name hostname, running at port 80.
The web page being retrieved is /test.html and, in this simple test, the same page is retrieved repeatedly.
The rate at which requests are issued is 150 per second. The test involves initiating a total of 27,000 TCP
connections and on each connection one HTTP call is performed (a call consists of sending a request and
receiving a reply).

37 4 Mar 2000

2.22.2 Tuning with httperfmod_perl tutorial: Performance. Benchmarks.

The timeout option defines the number of seconds that the client is willing to wait to hear back from the
server. If this timeout expires, the tool considers the corresponding call to have failed. Note that with a
total of 27,000 connections and a rate of 150 per second, the total test duration will be approximately 180
seconds (27,000/150), independent of what load the server can actually sustain. And here is a result that
one might get:

 Total: connections 27000 requests 26701 replies 26701 test-duration 179.996 s

 Connection rate: 150.0 conn/s (6.7 ms/conn, <=47 concurrent connections)
 Connection time [ms]: min 1.1 avg 5.0 max 315.0 median 2.5 stddev 13.0
 Connection time [ms]: connect 0.3

 Request rate: 148.3 req/s (6.7 ms/req)
 Request size [B]: 72.0

 Reply rate [replies/s]: min 139.8 avg 148.3 max 150.3 stddev 2.7 (36 samples)
 Reply time [ms]: response 4.6 transfer 0.0
 Reply size [B]: header 222.0 content 1024.0 footer 0.0 (total 1246.0)
 Reply status: 1xx=0 2xx=26701 3xx=0 4xx=0 5xx=0

 CPU time [s]: user 55.31 system 124.41 (user 30.7% system 69.1% total 99.8%)
 Net I/O: 190.9 KB/s (1.6*10^6 bps)

 Errors: total 299 client-timo 299 socket-timo 0 connrefused 0 connreset 0
 Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

2.22.3 Tuning with crashme script

This is another crashme suite originally written by Michael Schilli and located at
http://www.linux-magazin.de/ausgabe.1998.08/Pounder/pounder.html . I did a few modifications (mostly
adding my() operands). I also allowed it to accept more than one url to test, since sometimes you want to
test an overall and not just one script.

The tool provides the same results as ab above but it also allows you to set the timeout value, so requests
will fail if not served within the time out period. You also get Latency (secs/Request) and Throughput
(Requests/sec) numbers. It can give you a better picture and make a complete simulation of your favorite
Netscape browser :).

I have noticed while running these 2 benchmarking suites - ab gave me results 2.5-3.0 times better. Both
suites run on the same machine with the same load with the same parameters. But the implementations are
different.

Sample output:

 URL(s): http://www.nowhere.com:81/perl/access/access.cgi
 Total Requests: 100
 Parallel Agents: 10
 Succeeded: 100 (100.00%)
 Errors: NONE
 Total Time: 9.39 secs
 Throughput: 10.65 Requests/sec
 Latency: 0.85 secs/Request

 4 Mar 200038

Stas Bekman2.22.3 Tuning with crashme script

http://www.nowhere.com:81/perl/access/access.cgi

http://www.linux-magazin.de/ausgabe.1998.08/Pounder/pounder.html

And the code:

 #!/usr/apps/bin/perl -w

 use LWP::Parallel::UserAgent;
 use Time::HiRes qw(gettimeofday tv_interval);
 use strict;

 ###
 # Configuration
 ###

 my $nof_parallel_connections = 10;
 my $nof_requests_total = 100;
 my $timeout = 10;
 my @urls = (
 ’ http://www.nowhere.com:81/perl/faq_manager/faq_manager.pl ’,
 ’ http://www.nowhere.com:81/perl/access/access.cgi ’,
);

 ##
 # Derived Class for latency timing
 ##

 package MyParallelAgent;
 @MyParallelAgent::ISA = qw(LWP::Parallel::UserAgent);
 use strict;

 ###
 # Is called when connection is opened
 ###
 sub on_connect {
 my ($self, $request, $response, $entry) = @_;
 $self->{__start_times}->{$entry} = [Time::HiRes::gettimeofday];
 }

 ###
 # Are called when connection is closed
 ###
 sub on_return {
 my ($self, $request, $response, $entry) = @_;
 my $start = $self->{__start_times}->{$entry};
 $self->{__latency_total} += Time::HiRes::tv_interval($start);
 }

 sub on_failure {
 on_return(@_); # Same procedure
 }

 ###
 # Access function for new instance var
 ###
 sub get_latency_total {
 return shift->{__latency_total};
 }

39 4 Mar 2000

2.22.3 Tuning with crashme scriptmod_perl tutorial: Performance. Benchmarks.

http://www.nowhere.com:81/perl/access/access.cgi

http://www.nowhere.com:81/perl/faq_manager/faq_manager.pl

 ##
 package main;
 ##
 ###
 # Init parallel user agent
 ###
 my $ua = MyParallelAgent->new();
 $ua->agent("pounder/1.0");
 $ua->max_req($nof_parallel_connections);
 $ua->redirect(0); # No redirects

 ###
 # Register all requests
 ###
 foreach (1..$nof_requests_total) {
 foreach my $url (@urls) {
 my $request = HTTP::Request->new(’GET’, $url);
 $ua->register($request);
 }
 }

 ###
 # Launch processes and check time
 ###
 my $start_time = [gettimeofday];
 my $results = $ua->wait($timeout);
 my $total_time = tv_interval($start_time);

 ###
 # Requests all done, check results
 ###

 my $succeeded = 0;
 my %errors = ();

 foreach my $entry (values %$results) {
 my $response = $entry->response();
 if($response->is_success()) {
 $succeeded++; # Another satisfied customer
 } else {
 # Error, save the message
 $response->message("TIMEOUT") unless $response->code();
 $errors{$response->message}++;
 }
 }

 ###
 # Format errors if any from %errors
 ###
 my $errors = join(’,’, map "$_ ($errors{$_})", keys %errors);
 $errors = "NONE" unless $errors;

 ###
 # Format results
 ###

 #@urls = map {($_,".")} @urls;

 4 Mar 200040

Stas Bekman2.22.3 Tuning with crashme script

 my @P = (
 "URL(s)" => join("\n\t\t ", @urls),
 "Total Requests" => "$nof_requests_total",
 "Parallel Agents" => $nof_parallel_connections,
 "Succeeded" => sprintf("$succeeded (%.2f%%)\n",
 $succeeded * 100 / $nof_requests_total),
 "Errors" => $errors,
 "Total Time" => sprintf("%.2f secs\n", $total_time),
 "Throughput" => sprintf("%.2f Requests/sec\n",
 $nof_requests_total / $total_time),
 "Latency" => sprintf("%.2f secs/Request",
 ($ua->get_latency_total() || 0) /
 $nof_requests_total),
);

 my ($left, $right);
 ###
 # Print out statistics
 ###
 format STDOUT =
 @<<<<<<<<<<<<<<< @*
 "$left:", $right
 .

 while(($left, $right) = splice(@P, 0, 2)) {
 write;
 }

2.22.4 Choosing MaxClients

The MaxClients directive sets the limit on the number of simultaneous requests that can be supported;
no more than this number of child server processes will be created. To configure more than 256 clients,
you must edit the HARD_SERVER_LIMIT entry in httpd.h and recompile. In our case we want this
variable to be as small as possible, this way we can virtually bound the resources used by the server chil-
dren. Since we can restrict each child’s process size -- the calculation of MaxClients is pretty straight-
forward :

 Total RAM Dedicated to the Webserver
 MaxClients = ------------------------------------
 MAX child’s process size

So if I have 400Mb left for the webserver to run with, I can set the MaxClients to be of 40 if I know
that each child is bounded to the 10Mb of memory (e.g. with Apache::Size Limit)

Certainly you will wonder what happens to your server if there are more than MaxClients concurrent
users at some moment. This situation is accompanied by the following warning message into the
error.log file:

 [Sun Jan 24 12:05:32 1999] [error] server reached MaxClients setting,
 consider raising the MaxClients setting

41 4 Mar 2000

2.22.4 Choosing MaxClientsmod_perl tutorial: Performance. Benchmarks.

There is no problem -- any connection attempts over the MaxClients limit will normally be queued, up
to a number based on the Listen Back log directive. Once a child process is freed at the end of a differ-
ent request, the connection will then be served.

But it is an error because clients are being put in the queue rather than getting served at once, despite the
fact that they do not get an error response. The error can be allowed to persist to balance available system
resources and response time, but sooner or later you will need to get more RAM so you can start more
children. The best approach is to try not to have this condition reached at all, and if reach it often you
should start to worry about it.

It’s important to understand how much real memory a child occupies. Your children can share the
memory between them (when OS supports that and you take action to allow the sharing happen. If this is
the case, chances are that your MaxClients can be even higher. But it seems that it’s not so simple to
calculate the absolute number. (If you come up with solution please let us know!). If the shared memory
was of the same size through the child’s life, we could derive a much better formula:

 Total_RAM + Shared_RAM_per_Child * MaxClients
 MaxClients = ---
 Max_Process_Size - 1

which is:

 Total_RAM - Max_Process_Size
 MaxClients = ---------------------------------------
 Max_Process_Size - Shared_RAM_per_Child

Let’s roll some calculations:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 4Mb

 500 - 10
 MaxClients = --------- = 81
 10 - 4

With no sharing in place

 500
 MaxClients = --------- = 50
 10

With sharing in place you can have 60% more servers without purchasing more RAM, if you improve and
keep the sharing level, let’s say:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 8Mb

 500 - 10
 MaxClients = --------- = 245
 10 - 8

 4 Mar 200042

Stas Bekman2.22.4 Choosing MaxClients

390% more servers!!! You’ve got the point :)

2.22.5 Choosing MaxRequestsPerChild

The MaxRequestsPer Child directive sets the limit on the number of requests that an individual child
server process will handle. After MaxRequestsPer Child requests, the child process will die. If
MaxRequestsPer Child is 0, then the process will live forever.

Setting MaxRequestsPer Child to a non-zero limit has two beneficial effects: it solves memory leak-
ages and helps reduce the number of processes when the server load reduces.

The first reason is the most crucial for mod_perl, since sloppy programming will cause a child process to
consume more memory after each request. If left unbounded, then after a certain number of requests the
children will use up all the available memory and leave the server to die from memory starvation. Note,
that sometimes standard system libraries leak memory too, especially on OSes with bad memory manage-
ment (e.g. Solaris 2.5 on x86 arch). If this is your case you can set MaxRequestsPer Child to a small
number, which will allow the system to reclaim the memory, greedy child process consumed, when it
exits after MaxRequestsPer Child requests. But beware -- if you set this number too low, you will
loose a fracture of the speed bonus you receive with mod_perl. Consider using Apache::PerlRun if
this is the case. Also setting MaxSpare Servers to a number close to MaxClients , will improve the
response time (but your parent process will be busy respawning new children all the time!)

Another approach is to use Apache::Size Limit . By using this module, you should be able to discon-
tinue using the MaxRequestsPer Child , although for some folks, using both in combination does the
job.

2.22.6 Choosing MinSpareServers, MaxSpareServers and StartServers

With mod_perl enabled, it might take as much as 30 seconds from the time you start the server until it is
ready to serve incoming requests. This delay depends on the OS, the number of preloaded modules and
the process load of the machine. So it’s best to set Start Servers and MinSpare Servers to high
numbers, so that if you get a high load just after the server has been restarted, the fresh servers will be
ready to serve requests immediately. With mod_perl, it’s usually a good idea to raise all 3 variables higher
than normal. In order to maximize the benefits of mod_perl, you don’t want to kill servers when they are
idle, rather you want them to stay up and available to immediately handle new requests. I think an ideal
configuration is to set MinSpare Servers and MaxSpare Servers to similar values, maybe even the
same. Having the MaxSpare Servers close to MaxClients will completely use all of your resources
(if MaxClients has been chosen to take the full advantage of the resources), but it’ll make sure that at
any given moment your system will be capable of responding to requests with the maximum speed (given
that number of concurrent requests is not higher than MaxClients .)

Let’s try some numbers. For a heavily loaded web site and a dedicated machine I would think of (note
400Mb is just for example):

43 4 Mar 2000

2.22.5 Choosing MaxRequestsPerChildmod_perl tutorial: Performance. Benchmarks.

 Available to webserver RAM: 400Mb
 Child’s memory size bounded: 10Mb
 MaxClients: 400/10 = 40 (larger with mem sharing)
 StartServers: 20
 MinSpareServers: 20
 MaxSpareServers: 35

However if I want to use the server for many other tasks, but make it capable of handling a high load, I’d
think of:

 Available to webserver RAM: 400Mb
 Child’s memory size bounded: 10Mb
 MaxClients: 400/10 = 40
 StartServers: 5
 MinSpareServers: 5
 MaxSpareServers: 10

(These numbers are taken off the top of my head, and it shouldn’t be used as a rule, but rather as examples
to show you some possible scenarios. Use this information wisely!)

2.22.7 Summary of Benchmarking to tune all 5 parameters

OK, we’ve run various benchmarks -- let’s summarize the conclusions:

MaxRequestsPerChild

If your scripts are clean and don’t leak memory, set this variable to a number as large as possible
(10000?). If you use Apache::Size Limit , you can set this parameter to 0 (equal to infinity).
You will want this parameter to be smaller if your code becomes unshared over the process’ life.

StartServers

If you keep a small number of servers active most of the time, keep this number low. Especially if
MaxSpare Servers is low as it’ll kill the just loaded servers before they were utilized at all (if
there is no load). If your service is heavily loaded, make this number close to MaxClients (and
keep MaxSpare Servers equal to MaxClients as well.)

MinSpareServers

If your server performs other work besides web serving, make this low so the memory of unused
children will be freed when there is no big load. If your server’s load varies (you get loads in bursts)
and you want fast response for all clients at any time, you will want to make it high, so that new chil-
dren will be respawned in advance and be waiting to handle bursts of requests.

MaxSpareServers

The logic is the same as of MinSpare Servers - low if you need the machine for other tasks, high
if it’s a dedicated web host and you want a minimal response delay.

 4 Mar 200044

Stas Bekman2.22.7 Summary of Benchmarking to tune all 5 parameters

MaxClients

Not too low, so you don’t get into a situation where clients are waiting for the server to start serving
them (they might wait, but not for too long). Do not set it too high, since if you get a high load and all
requests will be immediately granted and served, your CPU will have a hard time keeping up, and if
the child’s size * number of running children is larger than the total available RAM, your server will
start swapping (which will slow down everything, which in turn will make things even more slower,
until eventually your machine will die). It’s important that you take pains to ensure that swapping
does not normally happen. Swap space is an emergency pool, not a resource to be used on a consis-
tent basis. If you are low on memory and you badly need it - buy it, memory is amazingly cheap
these days.

But based on the test I conducted above, even if you have plenty of memory like I have (1Gb),
increasing MaxClients sometimes will give you no speedup. The more clients are running, the
more CPU time will be required, the less CPU time slices each process will receive. The response
latency (the time to respond to a request) will grow, so you won’t see the expected improvement. The
best approach is to find the minimum requirement for your kind of service and the maximum capabil-
ity of your machine. Then start at the minimum and test like I did, successively raising this parameter
until you find the point on the curve of the graph of the latency or/and throughput where the improve-
ment becomes smaller. Stop there and use it. Of course when you use these parameters in production
server, you will have the ability to tune them more precisely, since then you will see the real
numbers. Also don’t forget that if you add more scripts, or just modify the running ones -- most prob-
ably that the parameters need to be recalculated, since the processes will grow in size as you compile
in more code.

2.23 Persistent DB Connections
Another popular use of mod_perl is to take advantage of its ability to maintain persistent open database
connections. The basic approach is as follows:

 # Apache::Registry script

 use strict;
 use vars qw($dbh);

 $dbh ||= SomeDbPackage->connect(...);

Since $dbh is a global variable for the child, once the child has opened the connection it will use it over
and over again, unless you perform discon nect () .

Be careful to use different names for handlers if you open connection to different databases!

Apache::DBI allows you to make a persistent database connection. With this module enabled, every
connect() request to the plain DBI module will be forwarded to the Apache::DBI module. This
looks to see whether a database handle from a previous connect() request has already been opened,
and if this handle is still valid using the ping method. If these two conditions are fulfilled it just returns the
database handle. If there is no appropriate database handle or if the ping method fails, a new connection is
established and the handle is stored for later re-use. There is no need to delete the discon nect ()

45 4 Mar 2000

2.23 Persistent DB Connectionsmod_perl tutorial: Performance. Benchmarks.

statements from your code. They will not do a thing, as the Apache::DBI module overloads the
discon nect () method with a NOP. On child’s exit there is no explicit disconnect, the child dies and so
does the database connection. You may leave the use DBI; statement inside the scripts as well.

The usage is simple -- add to httpd.conf :

 PerlModule Apache::DBI

It is important, to load this module before any other DBI , DBD::* and ApacheDBI* modules!

 db.pl

 use DBI;
 use strict;

 my $dbh = DBI->connect(’DBI:mysql:database’, ’user’, ’password’,
 { autocommit => 0 }
) || die $DBI::errstr;

 ...rest of the program

2.23.1 Preopening Connections at the Child Process’ Fork Time

If you use DBI for DB connections, and you use Apache::DBI to make them persistent, it also allows
you to preopen connections to DB for each child with connect_on_init() method, thus saving up a
connection overhead on the very first request of every child.

 use Apache::DBI ();
 Apache::DBI->connect_on_init("DBI:mysql:test",
 "login",
 "passwd",
 {
 RaiseError => 1,
 PrintError => 0,
 AutoCommit => 1,
 }
);

This can be used as a simple way to have apache children establish connections on server startup. This call
should be in a startup file require()d by Perl Require or inside <Perl> section. It will establish a
connection when a child is started in that child process. See the Apache::DBI manpage to see the
requirements for this method.

2.23.2 Caching prepare() statements

You can also benefit from persistent connections by replacing prepare() with
prepare_cached(). That way you will always be sure that you have a good statement handle and
you will get some caching benefit. The downside is that you are going to pay for DBI to parse your SQL
and do a cache lookup every time you call prepare_cached().

 4 Mar 200046

Stas Bekman2.23.1 Preopening Connections at the Child Process’ Fork Time

Be warned that some databases doesn’t support caches of prepared plans. (e.g PostgreSQL and Sybase).
Though with Sybase you could open multiple connections to achieve the same result (at the risk of getting
deadlocks depending on what you are trying to do!)

2.23.3 Handling Timeouts

Another problem is with timeouts: some databases disconnect the client after a certain time of inactivity.
This problem is known as morning bug. The ping() method ensures that this will not happen. Some
DBD drivers don’t have this method, check the Apache::DBI manpage to see how to write a ping()
method.

Another approach is to change the client’s connection timeout. For mysql users, starting from
mysql-3.22.x you can set a wait_timeout option at mysqld server startup to change the default value.
Setting it to 36 hours probably would fix the timeout problem.

2.24 Using $|=1 under mod_perl and better print() tech-
niques.
As you know local $|=1; disables the buffering of the currently selected file handle (default is
STDOUT). If you enable it, ap_rflush() is called after each print() , unbuffering Apache’s IO.

If you are using a _bad_ style in generating output, which consist of multiple print() calls, or you just
have too many of them, you will experience a degradation in performance. The severity depends on the
number of the calls you make.

Many old CGIs were written in the style of:

 print "<BODY BGCOLOR=\"black\" TEXT=\"white\">";
 print "<H1>";
 print "Hello";
 print "</H1>";
 print " foo ";
 print "</BODY>";

which reveals the following drawbacks: multiple print() calls - performance degradation with $|=1 ,
backslashism which makes the code less readable and more diffi cult to format the HTML to be easily
readable as CGI’s output. The code below solves them all:

 print qq{
 <BODY BGCOLOR="black" TEXT="white">
 <H1>
 Hello
 </H1>
 foo
 </BODY>
 };

47 4 Mar 2000

2.24 Using $|=1 under mod_perl and better print() techniques.mod_perl tutorial: Performance. Benchmarks.

I guess you see the difference. Be careful though, when printing a <HTML> tag. The correct way is:

 print qq{<HTML>
 <HEAD></HEAD>
 <BODY>
 }

If you try the following:

 print qq{
 <HTML>
 <HEAD></HEAD>
 <BODY>
 }

Some older browsers might not accept the output as HTML, but rather print it as a plain text, since they
expect the first characters after the headers and empty line to be <HTML> and not spaces and/or additional
newline and then <HTML>. Even if it works with your browser, it might not work for others.

Now let’s go back to the $|=1 topic. I still disable buffering, for 2 reasons: I use few print() calls by
printing out multiline HTML and not a line per print() and I want my users to see the output immedi-
ately. So if I am about to produce the results of the DB query, which might take some time to complete, I
want users to get some titles ahead. This improves the usability of my site. Recall yourself: What do you
like better: getting the output a bit slower, but steadily from the moment you’ve pressed the Submit
button or having to watch the ‘‘falling stars’’ for awhile and then to receive the whole output at once, even
a few millisecs faster (if the client (browser) did not time out till then).

An even better solution is to keep the buffering enabled, and use a Perl API rflush() call to flush the
buffers when wanted. This way you can aggregate in the buffer the top of the page you are going to send
to user, and flush it a moment before you are going to do some lenghty operation, like DB query. So you
kill the two birds in one shoot: You show some of the data to the user immediately, so user will feel that
something is actually happening, and you almost have no performance hit caused by disabled buffering.

 use CGI ();
 my $r = shift;
 my $q = new CGI;
 print $q->header(’text/html’);
 print $q->start_html;
 print $q->p("Searching...Please wait");
 $r->rflush;
 # imitate a lenghty operation
 for (1..5) {
 sleep 1;
 }
 print $q->p("Done!");

Conclusion: Do not blindly follow suggestions, but think what is best for you in every given case.

 4 Mar 200048

Stas Bekman2.24 Using $|=1 under mod_perl and better print() techniques.

2.25 Avoid Import ing Functions
When possible, avoid importing a module’s functions into your name space. The aliases which are created
can take up quite a bit of space. Try to use method interfaces and fully qualified Package::func tion
or $Package::vari able like names instead.

2.26 Object Methods Calls Versus Function Calls
Which subroutine calling form is more efficient: OOP methods or functions?

2.26.1 The Overhead with Light Subroutines

Let’s do a benchmarking. We will start doing it using empty methods, which will allow us to measure the
real difference in the overhead each kind of call introduces. We will use this code:

 bench_call1.pl

 package Foo;

 use strict;
 use Benchmark;

 sub bar { };

 timethese(50_000, {
 method => sub { Foo->bar() },
 function => sub { Foo::bar(’Foo’);},
 });

The two calls are equivalent, since both pass the class name as their first name, function does this explic-
itly , while method does this transparently.

The benchmarking result:

 Benchmark: timing 50000 iterations of function, method...
 function: 0 wallclock secs (0.80 usr + 0.05 sys = 0.85 CPU)
 method: 1 wallclock secs (1.51 usr + 0.08 sys = 1.59 CPU)

We are are interested in the ’total CPU times’ and not the ’wallclock seconds’. It’s possible that the load
on the system was different for the two tests while benchmarking, so the wallclock times give us no useful
information.

We see that the method calling type is almost twice slower, than function. 0.85 CPU compared to 1.59
CPU real execution time. Why does this happen? Because the difference between functions and methods
is the time taken to resolve the pointer from the object, to find the module it belongs to and then the actual
method. Functions form has one parameter less to pass, less stack operations, less time to get to the guts of
the subroutine.

49 4 Mar 2000

2.25 Avoid Importing Functionsmod_perl tutorial: Performance. Benchmarks.

2.26.2 The Overhead with Heavy Subroutines

But that doesn’t mean that you shouldn’t use methods. Generally your functions do something, and the
more they do the less will be the difference, because the overhead time is a number of a final length.
Therefore the longer execution time of the function the smaller the relative overhead of the method call.
The next bechmark proves this point:

 bench_call2.pl

 package Foo;

 use strict;
 use Benchmark;

 sub bar {
 my $class = shift;

 my ($x,$y) = (100,100);
 $y = log ($x ** 10) for (0..20);
 };

 timethese(50_000, {
 method => sub { Foo->bar() },
 function => sub { Foo::bar(’Foo’);},
 });

We get a very close benchmarks!

 function: 33 wallclock secs (15.81 usr + 1.12 sys = 16.93 CPU)
 method: 32 wallclock secs (18.02 usr + 1.34 sys = 19.36 CPU)

Let’s make the subroutine bar even slower:

 sub bar {
 my $class = shift;

 my ($x,$y) = (100,100);
 $y = log ($x ** 10) for (0..40);
 };

And the result is amazing, the method call convention was faster then function:

 function: 81 wallclock secs (25.63 usr + 1.84 sys = 27.47 CPU)
 method: 61 wallclock secs (19.69 usr + 1.49 sys = 21.18 CPU)

In case your functions do very little, like the functions that generate HTML tags in CGI.pm , the overhead
might become a significant one. If your goal is speed you might consider to use the function form, but if
you write a big and complicated application, it’s much better to use the method form, as it will make your
code easier to develop, maintain and debug.

 4 Mar 200050

Stas Bekman2.26.2 The Overhead with Heavy Subroutines

2.26.3 Are All Methods Slower than Functions?

Some modules’ API is misleading, for example CGI.pm allows you to execute its subroutined as func-
tions and methods. As you will see in a moment its function form of the calls is slower than the method
form because it does some woodoo work when the function form call is used.

 use CGI;
 my $q = new CGI;
 $q->param(’x’,5);
 my $x = $q->param(’x’);

versus

 use CGI qw(:standard);
 param(’x’,5);
 my $x = param(’x’);

As usual, let’s benchmark some very light calls and compare. Ideally we would expect the methods to be
slower than functions based on the previous benchmarks:

 bench_call3.pl

 use Benchmark;

 use CGI qw(:standard);
 $CGI::NO_DEBUG = 1;
 my $q = new CGI;
 my $x;
 timethese
 (20000, {
 method => sub {$q->param(’x’,5); $x = $q->param(’x’); },
 function => sub { param(’x’,5); $x = param(’x’); },
 });

The benchmark is written is such a way that all the initializations are done at the beginning, so that we get
as accurate performance figures as possible. Let’s do it:

 % ./bench_call3.pl

 function: 51 wallclock secs (28.16 usr + 2.58 sys = 30.74 CPU)
 method: 39 wallclock secs (21.88 usr + 1.74 sys = 23.62 CPU)

As we can see methods are faster than functions, which seems to be wrong. The explanation lays in the
way CGI.pm is implemented. CGI.pm uses some fancy tricks to make the same routine act both as a
method and a plain function. The overhead of checking whether the arguments list looks like a method
invocation or not will mask the slight difference in time for the way the function was called.

If you are intrigued and want to investigate further by yourself the subroutine you want to explore is called
self_or_default. The first line of this function short-circuits if you are using the object methods, but the
whole function is called if you are using the functional forms. Therefore, the functional form should be
slightly slower than the object form.

51 4 Mar 2000

2.26.3 Are All Methods Slower than Functions?mod_perl tutorial: Performance. Benchmarks.

2.26.4 Imported Symbols and Memory Usage

There is a real memory hit when you import all of the function into your process’ memory. This can
significantly enlarge memory requirements, particularly when there are many child processes.

In addition to polluting the namespace, when a process imports symbols from any module or any script it
grows by the size of the space allocated for those symbols. The more you import (e.g. qw(:stan dard)
vs qw(:all)) the more memory will be used. Let’s say the overhead is of size X. Now take the number
of scripts in which you deploy the function method interface, let’s call that Y. Finally let’s say that you
have a number of processes equal to Z.

You will need X*Y*Z size of additional memory, taking X=10k, Y=10, Z=30, we get 10k*10*30 =
3Mb!!! Now you understand the difference.

Let’s benchmark CGI.pm using GTop.pm. First we will try it with no exporting at all.

 use GTop ();
 use CGI ();
 print GTop->new->proc_mem($$)->size;

 1,949,696

Now exporting a few dozens symbols:

 use GTop ();
 use CGI qw(:standard);
 print GTop->new->proc_mem($$)->size;

 1,966,080

And finally exporting all the symbols (about 130)

 use GTop ();
 use CGI qw(:all);
 print GTop->new->proc_mem($$)->size;

 1,970,176

Results:

 import symbols size(bytes) delta(bytes) relative to ()

 () 1949696 0
 qw(:standard) 1966080 16384
 qw(:all) 1970176 20480

So in my example above X=20k => 20K*10*30 = 6Mb. You will need 6Mb more when importing all the
CGI.pm ’s symbols than when you import none at all.

 4 Mar 200052

Stas Bekman2.26.4 Imported Symbols and Memory Usage

Generally you use more than one script, run more than one process and probably import more symbols
from the additional modules that you deploy. So the real numbers are much bigger.

The function method is faster in the general case, because of the time overhead to resolve the pointer from
the object.

If you are looking for performance improvement, you will have to face the fact that having to type
My::Module::my_method might save you a good chunk of memory if the above call must not be
called with a reference to an object, but even then it can be passed by value.

I strongly endorse Apache::Request (libapreq) - Generic Apache Request Library. Its is written in C,
giving it a significant memory and performance benefit. It has all the functionality of CGI.pm except
HTML generation functions.

2.27 Sending plain HTML as a compressed output
Have you ever served a huge HTML file (e.g. a file bloated with JavaScript code) and wandered how
could you send it compressed, thus drammatically cutting down the download times. After all java applets
can be compressed into a jar and benefit from a faster download times. Why cannot we do the same with a
plain ASCII (HTML,JS and etc), it is a known fact that ASCII text can be compressed by a factor of 10.

Apache::GzipChain comes to help you with this task. If a client (browser) understands gzip encod-
ing this module compresses the output and sends it downstream. A client decompresses the data upon
receive and renders the HTML as if it was a plain HTML fetch.

For example to compress all html files on the fly, do:

 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::PassFile
 </Files>

Remember that it will work only if the browser claims to accept compressed input, thru
Accept-Encod ing header. Apache::GzipChain keeps a list of user-agents, thus it also looks at
User-Agent header, for known to accept compressed output browsers.

For example if you want to return compressed files which should pass in addition through Embperl
module, you would write:

 <Location /test>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::EmbperlChain Apache::PassFile
 </Location>

Hint: Watch an access_log file to see how many bytes were actually send, compare with a regular
configuration send.

53 4 Mar 2000

2.27 Sending plain HTML as a compressed outputmod_perl tutorial: Performance. Benchmarks.

(See perldoc Apache::GzipChain).

Notice that the rightmost PerlHandler must be a content producer. Use Apache::Pass File or another
similar module.

;o)

 4 Mar 200054

Stas Bekman2.27 Sending plain HTML as a compressed output

3 Choosing an Operating System and Hardware

55 4 Mar 2000

3 Choosing an Operating System and Hardwaremod_perl tutorial: Choosing an Operating System and Hardware

3.1 What we will learn in this chapter
Is it important?

Choosing an Operating System

Choosing Hardware

3.2 Is it impor tant?
You can invest a lot of time and money into server tuning and code rewriting according the guidelines you
have just learned, but your performance will be really bad if you do not take into account the hardware
demands, and do not wisely choose the operating system suited for your needs. While the tips below apply
to any webserver, they are written for an administrator of a mod_perl-enabled webserver

3.3 Choosing an Operating System
First let’s talk about Operating Systems (OS). While I am personally a Linux devotee, I do not want to
start yet another OS war. Assuming this, I will try to define what you should be looking for, then when
you know what do you want from your OS, go find it. Visit the Web sites of operating systems you are
interested in. You can gauge user’s opinions by searching relevant discussions in newsgroup and mailing
list archives such as Deja - http://deja.com and eGroups - http://egroups.com . I will leave this fan research
up to you. But I would use Linux or something from the *BSD family.

3.3.1 Stability and Robustness

Probably the most desired features in an OS are stability and robustness. You are in an Internet business,
which does not have normal working hours, like many conventional businesses you know about (9am to
5pm). You are open 24 hours a day. You cannot afford to be off-line, for your customers will go shop at
another service like yours, unless you have a monopoly :) . If the OS of your choice crashes every day or
so, I would throw it away, after doing a little investigation, for there might be a reason for a system crash.
Like a runaway server that eats up all the memory and disk, so you cannot blame the OS for that. Gener-
ally, people who use the OS for some time can tell you a lot about its stability.

3.3.2 Memory Management

You want an OS with a good memory management, some OSes are well known as memory hogs. The
same code can use twice as much memory on one OS compared to the other. If the size of the mod_perl
process is 10Mb and you have tens of these running, it definitely adds up!

 4 Mar 200056

Stas Bekman3.1 What we will learn in this chapter

http://egroups.com/

http://deja.com/

3.3.3 Memory Leakages

Some OSes and/or the libraries (like C runtime libraries) suffer from memory leaks. You cannot afford
such a system, for you are already know that a single mod_perl process sometimes serves thousands of
requests before itimer terminates. So if a leak occurs on every request, your memory demands will be
huge. Of course your code can be the cause of the memory leaks as well (check out the Apache::Leak
module). Certainly, you can lower the number of requests to be served over the process’ life, but that can
degrade performance.

3.3.4 Sharing Memory

You want an OS with good memory sharing capabilities. As you have learned, if you preload the modules
and scripts at server startup, they are shared between the spawned children, at least for a part of a process’
life span, since memory pages become ‘‘dirty’’ and cease to be shared. This feature can save you up a lot
of memory!

3.3.5 Cost and Support

If you are in a big business you are probably do not mind paying another $1000 for some fancy OS and
to get the bundled support for it. But if your resources are low, you will look for cheaper and free OS. Free
does not mean bad, it can be quite opposite as we all either know from our own experience or read about
in news. Free OSes could have and do have the best support you can find. It is very easy to understand -
most of the people are not rich and will try to use a cheaper or free OS first if it does the work for them.
Since it really fits their needs, many people keep using it and eventually know it well enough to be able to
provide support for others in trouble. Why would they do this for free? For the spirit of the first days of
the Internet, when there was no commercial Internet and people helped each other, because someone
helped them in first place. I was there, I was touched by that spirit and I will do anything to keep that spirit
alive.

But, let’s get back to our world. We are living in material world, and our bosses pay us to keep the
systems running. So if you feel that you cannot provide the support yourself and you do not trust the avail-
able free resources, you must pay for an OS backed by a company, and blame them for any problem. Your
boss wants to be able to sue someone if the project has a problem caused by the external product that is
being used in the project. If you buy a product and the company selling it, claims support, you have
someone to sue. You do not have someone to sue other than getting yourself fired if you go with Open
Source and it fails.

Also remember that if you spend less or zero money on OS and Software, you will be able to buy a better
and stronger hardware.

3.3.6 Discontinued products

You have invested a lot of time and money into developing some proprietary software that is bundled with
the OS you were developing on. Like writing a mod_perl handler that takes advantage of some proprietary
features of the OS and it will not run on any other OS. Things are under control, the performance is great
and you sing from happiness. But... one day the company who wrote your beloved OS goes bankrupt,

57 4 Mar 2000

3.3.3 Memory Leakagesmod_perl tutorial: Choosing an Operating System and Hardware

which is not unlikely to happen nowadays. You are stuck with their last masterpiece and no support! What
you are going to do then? Invest more into porting the software to another OS...

Everyone can be hit by this mini-disaster, so it is better to check the background of the company when
making your choice, but still you never know what will happen tomorrow. The OSes in this hazard group
are completely developed by a single companies. Free OSes are probably less susceptible to this, for
development is distributed between many companies and developers, so if a person who developed a
really important part of the kernel lost interest in continuing, someone else will pick the falling flag and
carry on. Of course if tomorrow some better project showed up, developers might migrate there and
finally drop the development, but we are here not to let this happen.

In the final analysis, the decision is yours.

3.3.7 OS Releases

Actively developed OSes generally try to keep the pace with the latest technology developments, and
continually optimize the kernel and other parts of the OS to become better and faster. Nowadays, Internet
and networking in general are the hottest targets for system developers. Sometimes a simple OS upgrade
to a latest stable version, can save you an expensive hardware upgrade. Also, remember that when you
buy new hardware, chances are that the latest software will make the most of it. Since the existing soft-
ware (drivers) might support the brand new product because of its backwards compatibility with previous
products of the same family, it might not reap all the benefits of the new features. It means that you could
spend much less money for almost the same functionality if you were to buy a previous model of the same
product.

3.4 Choosing Hardware
Since I am not fond of the idea of updating this section every day a new processor or memory type comes
out, I will only hint what should you look for and suggest that sometimes the most expensive machine is
not the one which provides the best performance.

Your demands are based on many aspects and components. Let’s discuss some of them.

In discussion course you might meet some unfamiliar terms, here are some of them:

Clustering - a bunch of machines connected together to perform one big or many small computa-
tional tasks in a reasonable time.

Load balancing - users can remember only a name of one of your machines - namely of your server,
but it cannot stand the heavy load, so you use a clustering approach, distributing the load over a
number of machines. The central server, the one users access when they type the name of the service,
works as a dispatcher, by redirecting requests to the rest of the machines, sometimes it also collects
the results and return them to the users. One of the advantages is that you can take one of the
machines down for a repair or upgrade, and your service will still work - the main server will not
dispatch the requests to the machine that was taken down. I will just say that there are many load
balancing techniques.

 4 Mar 200058

Stas Bekman3.4 Choosing Hardware

NIC - Network Interface Card.

RAM - Random Access Memory

3.4.1 Expected site traffic

If you are building a fan site, but want to amaze your friends with a mod_perl guest book, an old 486
machine will do it. If you are into a serious business, it is very important to build a scalable server, so if
your service is successful and becomes popular, you get your server’s traffic doubled every few days, you
should be ready to add more resources dynamically. While we can define the webserver scalability more
precisely, the important thing is to make sure that you can add more power to your webserver(s)
without investing additional money into a software developing (almost, you will need a software to
connect your servers if you add more of them). It means that you should choose a hardware/OS that can
talk to other machines and become a part of the cluster.

From the other hand if you prepare for a big traffic and buy a monster to do the work for you, what
happens if your service does not prove to be as successful as you thought it would be. Then you spent too
much money and meanwhile there were a new faster processors and other hardware components released,
so you loose again.

Wisdom and prophecy , that’s all it takes :)

3.4.2 Cash

Everybody knows that Internet is a cash hole, what you throw in, hardly comes back. This is not always
true, but there is a lot of wisdom in these words. While you have to invest money to build a decent service,
it can be cheaper! You can spend as much as 10 times more money on a strong new machine, but get only
a 10% improvement in performance. Remember that a four year old processor is still very powerful.

If you really need a lot of power do not think about a single strong machine (unless you have money to
throw away), think about clustering and load balancing. You can probably buy 10 times more older but
very cheap machines and have a 8 times more power, then purchasing only one single new machine. Why
is that? Because as I mentioned before generally the performance improvement is marginal while the price
is much bigger. Because 10 machines will do faster disk I/O, than one single machine, even if the disk is
much faster. Yes, you have more administration overhead, but there is a chance you will have it anyway,
for in a short time the machine you have just invested in will not stand the load anyway and you will have
to purchase more and think how to implement load balancing and file system distribution.

Why I am so convinced? Facts! Look at the most used services on the Internet: search engines, email
servers and the like -- most of them are using a clustering approach. While you may not always notice
that, they do it by hiding the real implementation behind the proxy servers.

59 4 Mar 2000

3.4.1 Expected site trafficmod_perl tutorial: Choosing an Operating System and Hardware

3.4.3 Internet Connection

You have the best hardware you can get, but the service is still crawling. Make sure you have a fast Inter-
net connection. Not as fast as your ISP claims it to be, but fast as it should be. The ISP might have a very
good connection to the Internet, but puts many clients on the same line. If these are heavy clients, your
traffic will have to share the same line and the throughput will decline. Think about a dedicated connec-
tion and make sure it is truly dedicated. Trust the ISP but check it!

The idea of having a connection to The Inter net is a little misleading. Many Web hosting and co-location
companies have large amounts of bandwidth, but still have poor connectivity. The public exchanges, such
as MAE-East and MAE-West, frequently become overloaded, yet many ISPs depend on these exchanges.

Private peering means that providers can exchange traffic much quicker.

Also, if your Web site is of global interest, check that the ISP has good global connectivity. If the Web
site is going to be visited mostly by people in a certain country or region, your server should probably be
located there.

And a bad connectivity can directly influence your machine’s performance. Here is a story, one of the
developers told on the mod_perl mailing list:

 What relationship has 10% packet loss on one upstream provider got
 to do with machine memory ?

 Yes.. a lot. For a nightmare week, the box was located downstream of
 a provider who was struggling with some serious bandwidth problems
 of his own... people were connecting to the site via this link, and
 packet loss was such that retransmits and tcp stalls were keeping
 httpd heavies around for much longer than normal.. instead of
 blasting out the data at high or even modem speeds, they would be
 stuck at 1k/sec or stalled out... people would press stop and
 refresh, httpds would take 300 seconds to timeout on writes to
 no-one.. it was a nightmare. Those problems didn’t go away till I
 moved the box to a place closer to some decent backbones.

 Note that with a proxy, this only keeps a lightweight httpd tied up,
 assuming the page is small enough to fit in the buffers. If you are
 a busy internet site you always have some slow clients. This is a
 difficult thing to simulate in benchmark testing, though.

3.4.4 I/O performance

If your service is I/O bound (does a lot of read/write operations to disk, remember that relational databases
are sitting on disk as well) you need a very fast disk. So you should not spend money on Video card and
monitor (monochrome card and 14‘‘ B&W are perfectly adequate for a server -- you will probably be
telnetted or ssh-ed in most of the time), but rather look for disks with the best price/performance ratio. Of
course, ask around and avoid disks that have a reputation for headcrashes and other disasters.

 4 Mar 200060

Stas Bekman3.4.3 Internet Connection

With money in hand you should think about getting a RAID system. RAID is generally a box with many
HDs. It is capable of reading and writing data much faster, and is protected against disk failures. It does
this by duplicating the same data over a number of disks, so if one fails, the RAID controller detects it and
the data is still correct on the duplicated disks. You must think about RAID or similar systems if you have
an enormous data set to serve. (What is an enormous data set nowadays? Gigabytes, terabytes?).

Ok, we have a fast disk, what’s next? You need a fast disk controller. So either you should use the one
embedded on your motherboard or you should plug a controller card if the one you have onboard is not
good enough.

3.4.5 Memory

How much RAM (Randomly Accessed Memory) do you need? Nowadays, chances are you will hear:
‘‘Memory is cheap, the more you buy the better’’. But how much is enough? The answer pretty straight-
forward: ‘‘You do not want your machine to swap’’. When the CPU needs to write something into
memory, but notices that it is already full, it takes the least frequently used memory pages and swaps them
out. Swapping out means writing the data to disk. Another process then references some of its own data,
which happens to be on one of the pages that were just swapped out. The CPU, ever obliging, swaps it
back in again, probably swapping out some other data that will be needed very shortly by another process.
Carried to the extreme, the CPU and disk start to thrash hopelessly in circles, without getting any real
work done. The less RAM there is, the more often this scenario arises. Worse, you can exhaust swap space
as well, and then the troubles really set in...

How do you make a decision? You know the highest rate your server expects to serve pages and how long
it takes to do so. Now you can calculate how many server processes you need. Knowing the maximum
size any of your servers can get, you know how much memory you need. You probably need less memory
than you have calculated if your OS supports memory sharing and you know how to make best use of this
feature (preloading the modules and scripts at server startup). Do not forget that other essential system
processes need memory as well, so you should plan not only for the web server, but also take into account
the other players. Remember that requests can be queued, so you can afford to let your client wait for a
few moments until a server is available to serve it, your numbers will be more correct, since you generally
do not have the highest load, but you should be ready to bear the peaks. So you need to reserve at least
20% of free memory for peak situations. Many sites have crashed a few moments after a big scoop about
them was posted and unexpected number of requests suddenly came in. (This is called a Slashdot effect,
which was born at http://slashdot.org) If you are about to announce something cool, be aware of the
possible consequences.

3.4.6 Bottlenecks

The most important thing to understand is that you might use the most expensive components, but still get
bad performance. Why? Let me introduce an annoying word: A bottleneck.

A machine is an aggregate of many big and small components. Each one of them may be a bottleneck. If
you have a fast processor but a small amount of RAM (memory), the processor will be under-utilized
waiting for the kernel to swap the memory pages in and out, because memory is too small to hold the most
used ones. If you have a lot of memory and a fast processor and a fast disk, but a slow controller - the

61 4 Mar 2000

3.4.5 Memorymod_perl tutorial: Choosing an Operating System and Hardware

http://slashdot.org/

performance will be bad, and you have wasted money.

Use a fast NIC (Network Interface Card) that does not create a bottleneck. If it is slow, the whole service
is slow. This is the most important component, since webservers are much more network-bound than
disk-bound!

3.4.7 Conclusion

To use your money optimally you have to understand the hardware very well, so you will know what to
pick. Otherwise, you should hire a knowledgeable hardware consultants and employ him/her on a regular
basis, since your demands will probably change as time goes by and your hardware will likewise be forced
to adapt as well.

;o)

 4 Mar 200062

Stas Bekman3.4.7 Conclusion

4 Getting Help and Further Learning

63 4 Mar 2000

4 Getting Help and Further Learningmod_perl tutorial: Getting Help and Further Learning

4.1 What we will learn in this chapter
Getting help

Get help with mod_perl

Get help with Perl

Get help with Perl/CGI

Get help with Apache

Get help with DBI

Get help with Squid

4.2 Getting help
If after reading this guide and other documents listed in this section, you feel that your question is not yet
answered, please ask the apache/mod_perl mailing list to help you. But first try to browse the mailing list
archive. Most of the time you will find the answer for your question by searching the mailing archive,
since there is a big chance someone else has already encountered the same problem and found a solution
for it. If you ignore this advice, do not be surprised if your question will be left unanswered - it bores
people to answer the same question more than once. It does not mean that you should avoid asking ques-
tions. Just do not abuse the available help and RTFM before you call for HELP . (You have certainly
heard the infamous fable of the shepherd boy and the wolves)

4.3 Get help with mod_perl
mod_perl home

http://perl.apache.org

mod_perl Garden project

http://modperl.sourcegarden.org

mod_perl Books

’Apache Modules’ Book

http://www.modperl.com is the home site of The Apache Modules Book, a book about creating
Web server modules using the Apache API, written by Lincoln Stein and Doug MacEachern.

Now you can purchase the book at your local bookstore or from the online dealer. O’Reilly lists
this book as:

 4 Mar 200064

Stas Bekman4.1 What we will learn in this chapter

http://www.modperl.com/

http://modperl.sourcegarden.org/

http://perl.apache.org/

 Writing Apache Modules with Perl and C
 By Lincoln Stein & Doug MacEachern
 1st Edition March 1999
 1-56592-567-X, Order Number: 567X
 746 pages, $34.95

’Enabling web services with mod_perl’ Book

http://www.modperlbook.com is the home site of the new mod_perl book, that Eric Cholet and
Stas Bekman are co-authoring together. We expect the book to be published in fall 2000.

Ideas, suggestions and comments are welcome. You may send them to info@modperlbook.com
.

mod_perl Guide

by Stas Bekman at http://perl.apache.org/guide

mod_perl FAQ

by Frank Cringle at http://perl.apache.org/faq/ .

mod_perl performance tuning guide

by Vivek Khera at http://perl.apache.org/tuning/ .

mod_perl plugin reference guide

by Doug MacEachern at http://perl.apache.org/src/mod_perl.html .

Quick guide for moving from CGI to mod_perl

at http://perl.apache.org/dist/cgi_to_mod_perl.html .

mod_perl_traps, common traps and solutions for mod_perl users

at http://perl.apache.org/dist/mod_perl_traps.html .

mod_perl Quick Reference Card

http://www.refcards.com (Apache and other refcards are available from this link)

mod_perl Resources Page

http://www.perlreference.com/mod_perl/

mod_perl mailing list

The Apache/Perl mailing list (modperl@apache.org) is available for mod_perl users and develop-
ers to share ideas, solve problems and discuss things related to mod_perl and the Apache::*
modules. To subscribe to this list, send mail to modperl-subscribe@apache.org with empty

65 4 Mar 2000

4.3 Get help with mod_perlmod_perl tutorial: Getting Help and Further Learning

http://www.perlreference.com/mod_perl/

http://www.refcards.com/

http://perl.apache.org/dist/mod_perl_traps.html

http://perl.apache.org/dist/cgi_to_mod_perl.html

http://perl.apache.org/src/mod_perl.html

http://perl.apache.org/tuning/

http://perl.apache.org/faq/

http://perl.apache.org/guide

http://www.modperlbook.com/

Subject and with Body :

 subscribe modperl

A searchable mod_perl mailing list archive available at http://forum.swarth-
more.edu/epigone/modperl . We owe it to Ken Williams.

More archives available:

http://www.geocrawler.com/lists/3/web/182/0/

http://www.bitmechanic.com/mail-archives/modperl/

http://www.mail-archive.com/modperl%40apache.org/

http://www.davin.ottawa.on.ca/archive/modperl/

http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl

http://www.egroups.com/group/modperl/

4.4 Get help with Perl
The Perl FAQ

http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html

The Perl home

http://www.perl.com/

The Perl Journal

http://www.tpj.com/

Perl Module Mechanics

http://world.std.com/~swmcd/steven/perl/module_mechanics.html - This page describes the mechan-
ics of creating, compiling, releasing and maintaining Perl modules.

4.5 Get help with Perl/CGI
Perl/CGI FAQ

at http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

 4 Mar 200066

Stas Bekman4.4 Get help with Perl

http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

http://world.std.com/~swmcd/steven/perl/module_mechanics.html

http://www.tpj.com/

http://www.perl.com/

http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html

http://www.egroups.com/group/modperl/

http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl

http://www.davin.ottawa.on.ca/archive/modperl/

http://www.mail-archive.com/modperl%40apache.org/

http://www.bitmechanic.com/mail-archives/modperl/

http://www.geocrawler.com/lists/3/web/182/0/

http://forum.swarthmore.edu/epigone/modperl

http://forum.swarthmore.edu/epigone/modperl

Answers to some bothering Perl and Perl/CGI questions

http://stason.org/TULARC/webmaster/myfaq.html

Idiot’s Guide to CGI programming

http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html

WWW Security FAQ

http://www.w3.org/Security/Faq/www-security-faq.html

CGI/Perl Taint Mode FAQ

http://www.gunther.web66.com/FAQS/taintmode.html (by Gunther Birznieks)

4.6 Get help with Apache
Apache Project’s Home

http://www.apache.org

Apache Quick Reference Card

http://www.refcards.com (Apache and other refcards are available from this link)

The Apache FAQ

http://www.apache.org/docs/misc/FAQ.html

Apache Server Documentation

http://www.apache.org/docs/

Apache Handlers

http://www.apache.org/docs/handler.html

mod_rewrite Guide

http://www.engelschall.com/pw/apache/rewriteguide/

4.7 Get help with DBI
Perl DBI examples

67 4 Mar 2000

4.6 Get help with Apachemod_perl tutorial: Getting Help and Further Learning

http://www.engelschall.com/pw/apache/rewriteguide/

http://www.apache.org/docs/handler.html

http://www.apache.org/docs/

http://www.apache.org/docs/misc/FAQ.html

http://www.refcards.com/

http://www.apache.org/

http://www.gunther.web66.com/FAQS/taintmode.html

http://www.w3.org/Security/Faq/www-security-faq.html

http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html

http://stason.org/TULARC/webmaster/myfaq.html

http://www.saturn5.com/~jwb/dbi-examples.html (by Jeffrey William Baker).

DBI Homepage

http://www.symbolstone.org/technology/perl/DBI/

DBI mailing list infor mation

http://www.fugue.com/dbi/

DBI mailing list archives

http://outside.organic.com/mail-archives/dbi-users/ http://www.xray.mpe.mpg.de/mailing-lists/dbi/

Persistent connections with mod_perl

http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS

4.8 Get help with Squid - Inter net Object Cache
Home page - http://squid.nlanr.net/

FAQ - http://squid.nlanr.net/Squid/FAQ/FAQ.html

Users Guide - http://squid.nlanr.net/Squid/Users-Guide/

Mailing lists - http://squid.nlanr.net/Squid/mailing-lists.html

;o)

 4 Mar 200068

Stas Bekman4.8 Get help with Squid - Internet Object Cache

http://squid.nlanr.net/Squid/mailing-lists.html

http://squid.nlanr.net/Squid/Users-Guide/

http://squid.nlanr.net/Squid/FAQ/FAQ.html

http://squid.nlanr.net/

http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS

http://www.xray.mpe.mpg.de/mailing-lists/dbi/

http://outside.organic.com/mail-archives/dbi-users/

http://www.fugue.com/dbi/

http://www.symbolstone.org/technology/perl/DBI/

http://www.saturn5.com/~jwb/dbi-examples.html

Table of Contents:
......... 1Tutorial: Improving Script Performance Under mod_perl
............. 3mod_perl tutorial: Getting Started Fast
................. 31 Getting Started Fast
............... 41.1 mod_perl in Four Slides
................ 41.2 What is mod_perl?
.................. 51.3 Installation
................. 61.4 Configuration
.......... 61.5 The "mod_perl rules" Apache::Registry Scripts
........... 71.6 The "mod_perl rules" Apache Perl Module
.......... 71.7 Is That All I Need To Know About mod_perl?
............ 9mod_perl tutorial: Performance. Benchmarks.
............... 92 Performance. Benchmarks.
............. 102.1 What we will learn in this chapter
............. 112.2 Performance: An Overall picture
............ 112.3 Analysis of SW and HW Requirements
................. 122.4 Sharing Memory
.............. 122.5 How Shared My Memory Is
............ 132.6 Preload Perl modules at server startup
........... 132.6.1 Preload Perl modules - Real Numbers
............... 172.7 Preload Registry Scripts
............. 182.8 Global vs Fully Qualified Variables
................. 182.9 PerlSetupEnv Off
......... 192.10 Adding a Proxy Server in http Accelerator Mode
.................. 212.11 KeepAlive
............. 212.12 Upload/Download of Big Files
......... 222.13 Forking or Executing subprocesses from mod_perl
................ 262.14 Memory leakage
............ 282.15 Checking script modification times
................ 282.16 Cached stat() calls
............. 292.17 Be carefull with symbolic links
............. 292.18 Limit ing the size of the processes
.......... 302.19 Limit ing the resources used by httpd children
......... 302.20 Limit ing the request rate speed (robots blocking)
......... 312.21 Benchmarks. Impressing your Boss and Colleagues.
...... 312.21.1 Benchmarking scripts with execution times below 1 second :)
............. 312.21.2 PerlHandler’s Benchmarking
..... 312.22 Tuning the Apache’s configuration variables for the best performance
............ 322.22.1 Tuning with ab - ApacheBench
............... 372.22.2 Tuning with httperf
............. 382.22.3 Tuning with crashme script
.............. 412.22.4 Choosing MaxClients
............ 432.22.5 Choosing MaxRequestsPerChild
..... 432.22.6 Choosing MinSpareServers, MaxSpareServers and StartServers
........ 442.22.7 Summary of Benchmarking to tune all 5 parameters

i 4 Mar 2000

.............. 452.23 Persistent DB Connections

....... 462.23.1 Preopening Connections at the Child Process’ Fork Time

............. 462.23.2 Caching prepare() statements

............... 472.23.3 Handling Timeouts

........ 472.24 Using $|=1 under mod_perl and better print() techniques.

.............. 492.25 Avoid Importing Functions

.......... 492.26 Object Methods Calls Versus Function Calls

........... 492.26.1 The Overhead with Light Subroutines

........... 502.26.2 The Overhead with Heavy Subroutines

.......... 512.26.3 Are All Methods Slower than Functions?

........... 522.26.4 Imported Symbols and Memory Usage

.......... 532.27 Sending plain HTML as a compressed output

....... 55mod_perl tutorial: Choosing an Operating System and Hardware

........... 553 Choosing an Operating System and Hardware

............. 563.1 What we will learn in this chapter

................. 563.2 Is it important?

.............. 563.3 Choosing an Operating System

.............. 563.3.1 Stability and Robustness

............... 563.3.2 Memory Management

............... 573.3.3 Memory Leakages

................ 573.3.4 Sharing Memory

................ 573.3.5 Cost and Support

............... 573.3.6 Discontinued products

................. 583.3.7 OS Releases

................ 583.4 Choosing Hardware

............... 593.4.1 Expected site traffic

.................. 593.4.2 Cash

............... 603.4.3 Internet Connection

................ 603.4.4 I/O performance

.................. 613.4.5 Memory

................. 613.4.6 Bottlenecks

................. 623.4.7 Conclusion

.......... 63mod_perl tutorial: Getting Help and Further Learning

.............. 634 Getting Help and Further Learning

............. 644.1 What we will learn in this chapter

.................. 644.2 Getting help

............... 644.3 Get help with mod_perl

................ 664.4 Get help with Perl

............... 664.5 Get help with Perl/CGI

................ 674.6 Get help with Apache

................ 674.7 Get help with DBI

........... 684.8 Get help with Squid - Internet Object Cache

 4 Mar 2000ii

		1€€Getting Started Fast

		1.1€€mod_perl in Four Slides

		1.2€€What is mod_perl?

		1.3€€Installation

		1.4€€Configuration

		1.5€€The "mod_perl rules" Apache::Registry Scripts

		1.6€€The "mod_perl rules" Apache Perl Module

		1.7€€Is That All I Need To Know About mod_perl?

		2€€Performance. Benchmarks.

		2.1€€What we will learn in this chapter

		2.2€€Performance: An Overall picture

		2.3€€Analysis of SW and HW Requirements

		2.4€€Sharing Memory

		2.5€€How Shared My Memory Is

		2.6€€Preload Perl modules at server startup

		2.6.1€€Preload Perl modules - Real Numbers

		2.7€€Preload Registry Scripts

		2.8€€Global vs Fully Qualified Variables

		2.9€€PerlSetupEnv Off

		2.10€€Adding a Proxy Server in http Accelerator Mode

		2.11€€KeepAlive

		2.12€€Upload/Download of Big Files

		2.13€€Forking or Executing subprocesses from mod_perl

		2.14€€Memory leakage

		2.15€€Checking script modification times

		2.16€€Cached stat†‡ calls

		2.17€€Be carefull with symbolic links

		2.18€€Limiting the size of the processes

		2.19€€Limiting the resources used by httpd children

		2.20€€Limiting the request rate speed †robots blocking‡

		2.21€€Benchmarks. Impressing your Boss and Colleagues.

		2.21.1€€Benchmarking scripts with execution times below 1 second :‡

		2.21.2€€PerlHandler's Benchmarking

		2.22€€Tuning the Apache's configuration variables for the best performance

		2.22.1€€Tuning with ab - ApacheBench

		2.22.2€€Tuning with httperf

		2.22.3€€Tuning with crashme script

		2.22.4€€Choosing MaxClients

		2.22.5€€Choosing MaxRequestsPerChild

		2.22.6€€Choosing MinSpareServers, MaxSpareServers and StartServers

		2.22.7€€Summary of Benchmarking to tune all 5 parameters

		2.23€€Persistent DB Connections

		2.23.1€€Preopening Connections at the Child Process' Fork Time

		2.23.2€€Caching prepare†‡ statements

		2.23.3€€Handling Timeouts

		2.24€€Using $|=1 under mod_perl and better print†‡ techniques.

		2.25€€Avoid Importing Functions

		2.26€€Object Methods Calls Versus Function Calls

		2.26.1€€The Overhead with Light Subroutines

		2.26.2€€The Overhead with Heavy Subroutines

		2.26.3€€Are All Methods Slower than Functions?

		2.26.4€€Imported Symbols and Memory Usage

		2.27€€Sending plain HTML as a compressed output

		3€€Choosing an Operating System and Hardware

		3.1€€What we will learn in this chapter

		3.2€€Is it important?

		3.3€€Choosing an Operating System

		3.3.1€€Stability and Robustness

		3.3.2€€Memory Management

		3.3.3€€Memory Leakages

		3.3.4€€Sharing Memory

		3.3.5€€Cost and Support

		3.3.6€€Discontinued products

		3.3.7€€OS Releases

		3.4€€Choosing Hardware

		3.4.1€€Expected site traffic

		3.4.2€€Cash

		3.4.3€€Internet Connection

		3.4.4€€I/O performance

		3.4.5€€Memory

		3.4.6€€Bottlenecks

		3.4.7€€Conclusion

		4€€Getting Help and Further Learning

		4.1€€What we will learn in this chapter

		4.2€€Getting help

		4.3€€Get help with mod_perl

		4.4€€Get help with Perl

		4.5€€Get help with Perl/CGI

		4.6€€Get help with Apache

		4.7€€Get help with DBI

		4.8€€Get help with Squid - Internet Object Cache

