This article is from the Nonlinear Science FAQ, by James D. Meiss jdm@boulder.colorado.edu with numerous contributions by others.
Popularizations
1 Gleick, J. (1987). Chaos, the Making of a New Science.
London, Heinemann. http://www.around.com/chaos.html
2 Stewart, I. (1989). Does God Play Dice? Cambridge, Blackwell.
http://www.amazon.com/exec/obidos/ASIN/1557861064
3 Devaney, R. L. (1990). Chaos, Fractals, and Dynamics: Computer
Experiments in Mathematics. Menlo Park, Addison-Wesley
http://www.amazon.com/exec/obidos/ASIN/1878310097
4 Lorenz, E., (1994) The Essence of Chaos, Univ. of Washington Press.
http://www.amazon.com/exec/obidos/ASIN/0295975148
5 Schroeder, M. (1991) Fractals, Chaos, Power: Minutes from an infinite paradise
W. H. Freeman New York:
Introductory Texts
1 Abraham, R. H. and C. D. Shaw (1992) Dynamics: The Geometry of
Behavior, 2nd ed. Redwood City, Addison-Wesley.
2 Baker, G. L. and J. P. Gollub (1990). Chaotic Dynamics.
Cambridge, Cambridge Univ. Press.
http://www.cup.org/titles/catalogue.asp?isbn=0521471060
3 DevaneyDevaney, R. L. (1986). An Introduction to Chaotic Dynamical
Systems. Menlo Park, Benjamin/Cummings.
http://math.bu.edu/people/bob/books.html
4 Kaplan, D. and L. Glass (1995). Understanding Nonlinear Dynamics,
Springer-Verlag New York. http://www.cnd.mcgill.ca/books_understanding.html
5 Glendinning, P. (1994). Stability, Instability and Chaos.
Cambridge, Cambridge Univ Press.
http://www.cup.org/Titles/415/0521415535.html
6 Jurgens, H., H.-O. Peitgen, et al. (1993). Chaos and Fractals: New
Frontiers of Science. New York, Springer Verlag.
http://www.springer-ny.com/detail.tpl?isbn=0387979034
7 Moon, F. C. (1992). Chaotic and Fractal Dynamics. New York, John Wiley.
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471545716.html
8 Percival, I. C. and D. Richard (1982). Introduction to Dynamics. Cambridge,
Cambridge Univ. Press.
http://www.cup.org/titles/catalogue.asp?isbn=0521281490
9 Scott, A. (1999). NONLINEAR SCIENCE: Emergence and Dynamics of
Coherent Structures, Oxford http://www4.oup.co.uk/isbn/0-19-850107-2
http://www.imm.dtu.dk/documents/users/acs/BOOK1.html
10 Smith, P (1998) Explaining Chaos, Cambridge
http://us.cambridge.org/titles/catalogue.asp?isbn=0521477476
11 Strogatz, S. (1994). Nonlinear Dynamics and Chaos. Reading,
Addison-Wesley
http://www.perseusbooksgroup.com/perseus-cgi-bin/display/0-7382-0453-6
12 Thompson, J. M. T. and H. B. Stewart (1986) Nonlinear Dynamics and
Chaos. Chichester, John Wiley and Sons.
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471876844.html
13 Tufillaro, N., T. Abbott, et al. (1992). An Experimental Approach
to Nonlinear Dynamics and Chaos. Redwood City, Addison-Wesley.
http://www.amazon.com/exec/obidos/ASIN/0201554410/
14 Turcotte, Donald L. (1992). Fractals and Chaos in Geology and
Geophysics, Cambridge Univ. Press.
http://www.cup.org/titles/catalogue.asp?isbn=0521567335
Introductory Articles
1 May, R. M. (1986). "When Two and Two Do Not Make Four."
Proc. Royal Soc. B228: 241.
2 Berry, M. V. (1981). "Regularity and Chaos in Classical Mechanics,
Illustrated by Three Deformations of a Circular Billiard."
Eur. J. Phys. 2: 91-102.
3 Crawford, J. D. (1991). "Introduction to Bifurcation Theory."
Reviews of Modern Physics 63(4): 991-1038.
3 Shinbrot, T., C. Grebogi, et al. (1992). "Chaos in a Double Pendulum."
Am. J. Phys 60: 491-499.
5 David Ruelle. (1980). "Strange Attractors,"
The Mathematical Intelligencer 2: 126-37.
Advanced Texts
1 Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics.
New York, Springer.
http://www.springer-ny.com/detail.tpl?isbn=038796890
2 Arrowsmith, D. K. and C. M. Place (1990), An Introduction to Dynamical Systems.
Cambridge, Cambridge University Press.
http://us.cambridge.org/titles/catalogue.asp?isbn=0521316502
3 Guckenheimer, J. and P. Holmes (1983), Nonlinear Oscillations, Dynamical
Systems, and Bifurcation of Vector Fields, Springer-Verlag New York.
4 Kantz, H., and T. Schreiber (1997). Nonlinear time series analysis.
Cambridge, Cambridge University Press
http://www.mpipks-dresden.mpg.de/~schreibe/myrefs/book.html
5 Katok, A. and B. Hasselblatt (1995), Introduction to the Modern
Theory of Dynamical Systems, Cambridge, Cambridge Univ. Press.
http://titles.cambridge.org/catalogue.asp?isbn=0521575575
6 Hilborn, R. (1994), Chaos and Nonlinear Dyanamics: an Introduction for
Scientists and Engineers, Oxford Univesity Press.
http://www4.oup.co.uk/isbn/0-19-850723-2
7 Lichtenberg, A.J. and M. A. Lieberman (1983), Regular and Chaotic Motion,
Springer-Verlag, New York .
8 Lind, D. and Marcus, B. (1995) An Introduction to Symbolic Dynamics and
Coding, Cambridge University Press, Cambridge
http://www.math.washington.edu/SymbolicDynamics/
9 MacKay, R.S and J.D. Meiss (eds) (1987), Hamiltonian Dynamical Systems
A reprint selection, , Adam Hilger, Bristol
10 Nayfeh, A.H. and B. Balachandran (1995), Applied Nonlinear Dynamics:
Analytical, Computational and Experimental Methods
John Wiley& Sons Inc., New York
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471593486.html
11 Ott, E. (1993). Chaos in Dynamical Systems. Cambridge University Press,
Cambridge. http://us.cambridge.org/titles/catalogue.asp?isbn=0521010845
12 L.E. Reichl, (1992), The Transition to Chaos, in Conservative and
Classical Systems: Quantum Manifestations Springer-Verlag, New York
13 Robinson, C. (1999), Dynamical Systems: Stability, Symbolic
Dynamics, and Chaos, 2nd Edition, Boca Raton, CRC Press.
http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=8495
14 Ruelle, D. (1989), Elements of Differentiable Dynamics and Bifurcation
Theory, Academic Press Inc.
15 Tabor, M. (1989), Chaos and Integrability in Nonlinear Dynamics:
an Introduction, Wiley, New York.
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471827282.html
16 Wiggins, S. (1990), Introduction to Applied Nonlinear Dynamical Systems
and Chaos, Springer-Verlag New York.
17 Wiggins, S. (1988), Global Bifurcations and Chaos, Springer-Verlag New
York.
 
Continue to: