previous page: 3.18] What is a Hamiltonian Chaos? (nonlinear science)
page up: Nonlinear Science FAQ
next page: 4.2] What technical journals have nonlinear science articles?

4.1] What should I read to learn more? (nonlinear science)


This article is from the Nonlinear Science FAQ, by James D. Meiss jdm@boulder.colorado.edu with numerous contributions by others.

4.1] What should I read to learn more? (nonlinear science)

1 Gleick, J. (1987). Chaos, the Making of a New Science.
London, Heinemann. http://www.around.com/chaos.html
2 Stewart, I. (1989). Does God Play Dice? Cambridge, Blackwell.
3 Devaney, R. L. (1990). Chaos, Fractals, and Dynamics: Computer
Experiments in Mathematics. Menlo Park, Addison-Wesley
4 Lorenz, E., (1994) The Essence of Chaos, Univ. of Washington Press.
5 Schroeder, M. (1991) Fractals, Chaos, Power: Minutes from an infinite paradise
W. H. Freeman New York:
Introductory Texts
1 Abraham, R. H. and C. D. Shaw (1992) Dynamics: The Geometry of
Behavior, 2nd ed. Redwood City, Addison-Wesley.
2 Baker, G. L. and J. P. Gollub (1990). Chaotic Dynamics.
Cambridge, Cambridge Univ. Press.
3 DevaneyDevaney, R. L. (1986). An Introduction to Chaotic Dynamical
Systems. Menlo Park, Benjamin/Cummings.
4 Kaplan, D. and L. Glass (1995). Understanding Nonlinear Dynamics,
Springer-Verlag New York. http://www.cnd.mcgill.ca/books_understanding.html
5 Glendinning, P. (1994). Stability, Instability and Chaos.
Cambridge, Cambridge Univ Press.
6 Jurgens, H., H.-O. Peitgen, et al. (1993). Chaos and Fractals: New
Frontiers of Science. New York, Springer Verlag.
7 Moon, F. C. (1992). Chaotic and Fractal Dynamics. New York, John Wiley.
8 Percival, I. C. and D. Richard (1982). Introduction to Dynamics. Cambridge,
Cambridge Univ. Press.
9 Scott, A. (1999). NONLINEAR SCIENCE: Emergence and Dynamics of
Coherent Structures, Oxford http://www4.oup.co.uk/isbn/0-19-850107-2
10 Smith, P (1998) Explaining Chaos, Cambridge
11 Strogatz, S. (1994). Nonlinear Dynamics and Chaos. Reading,
12 Thompson, J. M. T. and H. B. Stewart (1986) Nonlinear Dynamics and
Chaos. Chichester, John Wiley and Sons.
13 Tufillaro, N., T. Abbott, et al. (1992). An Experimental Approach
to Nonlinear Dynamics and Chaos. Redwood City, Addison-Wesley.
14 Turcotte, Donald L. (1992). Fractals and Chaos in Geology and
Geophysics, Cambridge Univ. Press.

Introductory Articles
1 May, R. M. (1986). "When Two and Two Do Not Make Four."
Proc. Royal Soc. B228: 241.
2 Berry, M. V. (1981). "Regularity and Chaos in Classical Mechanics,
Illustrated by Three Deformations of a Circular Billiard."
Eur. J. Phys. 2: 91-102.
3 Crawford, J. D. (1991). "Introduction to Bifurcation Theory."
Reviews of Modern Physics 63(4): 991-1038.
3 Shinbrot, T., C. Grebogi, et al. (1992). "Chaos in a Double Pendulum."
Am. J. Phys 60: 491-499.
5 David Ruelle. (1980). "Strange Attractors,"
The Mathematical Intelligencer 2: 126-37.

Advanced Texts
1 Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics.
New York, Springer.
2 Arrowsmith, D. K. and C. M. Place (1990), An Introduction to Dynamical Systems.
Cambridge, Cambridge University Press.
3 Guckenheimer, J. and P. Holmes (1983), Nonlinear Oscillations, Dynamical
Systems, and Bifurcation of Vector Fields, Springer-Verlag New York.
4 Kantz, H., and T. Schreiber (1997). Nonlinear time series analysis.
Cambridge, Cambridge University Press
5 Katok, A. and B. Hasselblatt (1995), Introduction to the Modern
Theory of Dynamical Systems, Cambridge, Cambridge Univ. Press.
6 Hilborn, R. (1994), Chaos and Nonlinear Dyanamics: an Introduction for
Scientists and Engineers, Oxford Univesity Press.
7 Lichtenberg, A.J. and M. A. Lieberman (1983), Regular and Chaotic Motion,
Springer-Verlag, New York .
8 Lind, D. and Marcus, B. (1995) An Introduction to Symbolic Dynamics and
Coding, Cambridge University Press, Cambridge
9 MacKay, R.S and J.D. Meiss (eds) (1987), Hamiltonian Dynamical Systems
A reprint selection, , Adam Hilger, Bristol
10 Nayfeh, A.H. and B. Balachandran (1995), Applied Nonlinear Dynamics:
Analytical, Computational and Experimental Methods
John Wiley& Sons Inc., New York
11 Ott, E. (1993). Chaos in Dynamical Systems. Cambridge University Press,
Cambridge. http://us.cambridge.org/titles/catalogue.asp?isbn=0521010845
12 L.E. Reichl, (1992), The Transition to Chaos, in Conservative and
Classical Systems: Quantum Manifestations Springer-Verlag, New York
13 Robinson, C. (1999), Dynamical Systems: Stability, Symbolic
Dynamics, and Chaos, 2nd Edition, Boca Raton, CRC Press.
14 Ruelle, D. (1989), Elements of Differentiable Dynamics and Bifurcation
Theory, Academic Press Inc.
15 Tabor, M. (1989), Chaos and Integrability in Nonlinear Dynamics:
an Introduction, Wiley, New York.
16 Wiggins, S. (1990), Introduction to Applied Nonlinear Dynamical Systems
and Chaos, Springer-Verlag New York.
17 Wiggins, S. (1988), Global Bifurcations and Chaos, Springer-Verlag New


Continue to:

previous page: 3.18] What is a Hamiltonian Chaos? (nonlinear science)
page up: Nonlinear Science FAQ
next page: 4.2] What technical journals have nonlinear science articles?